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A B S T R A C T   

Facial appearance is one prominent feature in analyzing several aspects, e.g., aesthetics and expression of 
emotions, and face analysis is crucial in many fields. Face analysis requires measurements that can be performed 
by different technologies and typically relies on landmarks identification. Recently, low-cost customer grade 3D 
cameras have been introduced in the market, enabling an increase of application at affordable cost with nominal 
adequate performances. Novel cameras require to be thoroughly metrologically characterized to guarantee these 
performances. Cameras are calibrated following a standard general-purpose procedure. However, the specificity 
of facial measurements requires a task-based metrological characterization to include typical influence factors. 
This work outlines a methodology for task-based metrological characterization of low-cost 3D cameras for facial 
analysis, consisting of: influence factor identification by ANOVA, related uncertainty contribution assessment, 
uncertainty propagation, landmarking uncertainty estimation. The proposed methodology is then demonstrated 
on a customer grade state-of-the-art 3D camera available on the market.   

1. Introduction 

Amongst human characteristics, facial appearance is the most sig
nificant in determining aspects ranging from aesthetics to the expression 
of moods and emotions. Face analysis is essential in several applications, 
e.g., emotion recognition with facial expressions, biometric authenti
cation and identification, human-computer interaction [1–4], age esti
mation [5], quantification of facial attractiveness [6–8]. Moreover, 
several medical, technological, and industrial applications benefit from 
studying the human face. Concerning the first, i.e., the medical field, 
oral-maxillo-facial surgery potentially benefits most from face analysis. 
In fact, the introduction of precise and reliable imaging and recon
struction technologies, such as 3D cone beam computed tomography 
(3D CBCT), made available a three-dimensional approach for the anal
ysis of hard and soft tissues of the face, which is more sophisticated than 
traditional bi-dimensional cephalometry [9–13]. Also, surgical planning 
of bony repositioning can improve its accuracy and reliability [13,14]. 
For example, it can be achieved by predicting the patients’ actual post- 
operative aesthetic appearance related to facial soft tissue involuntary 
displacements [15]. Some algorithms have been proposed to forecast the 
future soft tissue aspect of patients undergoing orthognathic corrective 

surgeries to that aim [9]. 
Measuring soft tissue features is an enabling technology for quanti

tatively evaluating people’s interaction and engagement with e-learning 
systems, allowing to overcome the loss of face-to-face interaction 
[16,17]. The recent widespread use of distance learning led to the 
impossibility for educators to observe external factors, e.g., facial fea
tures, speech, gestures [18], to evaluate learners’ engagement and 
attention. Computer vision applied to facial expression analysis aids in 
overcoming this limit [19]. Spivak et al. exploited similar ideas for a 
different remarkable application, proposing the automation of the 
marketing decision-making process through a custom facial expression 
recognition system capable of evaluating product quality [20]. Evalu
ating customer satisfaction is one of the most powerful tools for retailers 
and service providers [21]. Traditionally, data are collected through 
surveys and self-reports, whilst artificial intelligence and, particularly, 
machine learning leads to automated data collection and process mea
surement [22]. Facial expression analysis appeared to be the most 
suitable and the least intrusive method for large scale studies for these 
applications [23]. In this context, Gonzales-Rodriguez et al. proposed an 
application of facial emotion recognition to the field of tourism, high
lighting the potentiality of such an approach [22]. 
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The development of human-computer interaction (HCI) and human- 
robot interaction (HRI) is preparing the ground for the industry of the 
future, where humans and machines will share spaces and perform tasks 
in collaboration [24]. However, along with benefits such as increased 
productivity and efficiency, there are also emerging risks associated 
with direct interaction between humans and robots [25,26]. In this 
sense, the capability of the machines to understand human emotions 
through face expression recognition (FER) could enable a more effective 
interaction [27–31], but the gap between humans and machines in FER 
ability should be addressed. 

All the above-mentioned applications can be designed and imple
mented relying on the colour and depth information provided by RGB-D 
cameras. Nonetheless, the evaluation of the suitability of a device is 
usually a qualitative assessment, which could lead not to choose the 
proper camera for the application. This work aims to present a task- 
based methodology for the metrological characterization of a device. 
The considered task is related to face analysis, involving the identifi
cation of a subset of facial landmarks, and the adopted device is the Intel 
RealSense SR300 RGB-D camera. The following subsection motivates 
this work by describing the main criticalities of facial analysis, the main 
state-of-the-art measurement techniques’ strength and weaknesses and, 
discussing how current characterization methods for these technologies 
presents some shortcomings in thoroughly evaluating measurement 
uncertainty of face analysis tasks. 

1.1. State of the art 

In the last decades, computer-aided facial analysis in mentioned 
fields relied upon a 2D landmarking approach, i.e., positioning signifi
cant cephalometric points, called landmarks, on 2D data. The spread of 
new sensors for image acquisition, e.g., CBCT and depth cameras, 
enabled a three-dimensional approach for landmark positioning, with 
potentially higher reliability thanks to the information from the three 
dimensions and the increased robustness to light changes, pose orien
tations, and occlusions [32]. Regardless of the measurement approach, 
landmarking is a complex task, subject to errors due to the inter- and 
intra-operator variability in the location of cephalometric points [33]. 
Additionally, facial dysmorphism may induce further criticalities. 
Despite the research in the direction of automatic methods for 3D (or 2.5 
D) landmarking [33,34], there are still cases that might benefit from 
manual positioning by an experienced operator, e.g., maxillo-facial- 
surgery application, or when there is no need for a real-time land
marking, e.g., in off-line marketing and satisfaction/engagement eval
uation. Concerning the mentioned development of FER systems to 
improve the effectiveness and the safety in the domain of HRI, the 
construction of a training dataset to instruct the machine to recognize 
changes in human emotions should be based more on the reliability of 
the located landmarks, even if positioned manually by an expert oper
ator, rather than on an automated time-saving method. 

Several technologies are available for depth acquisition. These 
include expensive technologies, e.g. laser scanner [35], and customer 
grade alternatives, which are cheaper but still with interesting metro
logical performances and allow real-time application. These character
istics have ensured the spread of these devices in the last decade, and 
this work focuses on them. In particular, the interest in RGB-D cameras 
has grown considerably since the integration of colour (RGB) and depth 
(D) information has given impetus to the improvement of applications in 
a wide variety of fields such as hand gesture spotting and recognition for 
HCI [36], mobile robot navigation [37], automotive [38], and even 
agriculture [39]. 

As mentioned, several alternatives to obtain the depth information 
have been developed and integrated in RGB-D cameras. Passive stere
oscopy has been the first developed technology amongst the consumer 
market cameras, with the Microsoft Kinect v1 [40]. At least two cameras 
must be integrated into the same device to gather the depth information 
since depth is computed through triangulation between the point in the 

world space and the pixels on camera planes on which the point is 
projected. Resolution and operative range are excellent compared to the 
other technologies. Conversely, short-range applications may suffer 
from occlusions: if neither the cameras can detect a certain point in the 
space, the distance of that point from the device cannot be computed 
[41]. 

Structured-light devices retrieve the depth information projecting a 
pattern on the scene. Then, the pattern is deformed by the object surface 
and acquired by a receiver. The data are processed by an application- 
specific integrated circuit (ASIC). From the difference between the a 
priori known pattern and the deformed pattern acquired by the receiver, 
it is possible to compute the distance of the object from the camera. The 
transmitter and the receiver are placed close to each other to minimize 
the occlusion problem encountered in passive stereoscopy. Structured- 
light devices provide state-of-art results in short-range applications for 
consumer market cameras [42]. 

The distance of a point in space is computed using time-of-flight 
technology. An electromagnetic wave is projected on the scene, and 
the distance is computed by timing the lapse between the moment when 
the light is emitted and the moment when light is acquired by the 
receiver after that has been reflected back by the object surface. This 
technology is becoming adopted widely in the smartphone market [43] 
and can be adapted to the application by using different wavelengths 
and varying the power of the emitted light. The resolution is typically 
poor compared to the other technologies. 

The active stereoscopy working principle is similar to the passive 
stereoscopy one. The main difference lies in the introduction of an 
emitter that projects a pattern on the scene. This pattern artificially adds 
some features to the object to solve the correspondence problem, even in 
critical scenarios. For instance, a flat wall does not have any feature that 
the two opposite cameras can retrieve. Adding new features allows 
finding the conjugate points, namely the pixels on the images acquired 
by the two cameras, which refer to the same point in the space, hence 
computing the distance of the point from the device. This improvement 
widened the operative range; nevertheless, the occlusion problem still 
persists, especially at short-range distances. 

1.2. Scope of the work 

This work proposes an innovative task-based metrological charac
terization, i.e. identification of influence factors and estimation of 
measurement uncertainty, for customer grade cameras for face analysis. 
This section discusses the practical relevance of the metrological char
acterization, and the shortcomings of currently available methodologies 
will motivate the need of the hereby proposed task-based approach. 

Evaluating the metrological performance of these depth measuring 
devices is essential, within the complex framework briefly introduced 
above, including several measuring instruments and algorithms for 
facial analysis devoted to many applications. In fact, the reliability of the 
3D information is core to understand if the depth can be used only to 
complement the contribution of the RGB data in the development of face 
analysis algorithms, or even to be used standalone in applications that 
do not require any other data source but the depth frames. In particular, 
calibration is necessary to guarantee traceability and estimate accuracy. 
The evaluation of measurement uncertainty must be carried out to 
enable the comparison of performances amongst different technologies, 
evaluate the precision of the measurement result, and verify the 
compliance with applications precision requirements. Additionally, in
formation on the precision of the measured data may provide valuable 
input to improve the statistical modelling for machine learning and 
artificial intelligence-based applications, with definitive advantages in 
terms of robustness and accuracy [44–46]. 

Standards and literature agree on calibration and metrological 
characterization procedures, based on standard artefacts and material 
measures [47,48]. In particular, calibrated ball bars and spheres are 
exploited to estimate average errors in measuring specific shapes and 
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linear distances. Similarly, the measurement of flat surfaces allows for 
correcting systematic errors of planarity [47,48]. However, the evalu
ation of measurement uncertainty for face analysis application requires 
a task-based approach to estimate performances, applicability range and 
influence factors peculiar to the case at hand. In fact, the peculiarity of 
the measurand surface in the case at hand, i.e., a face, may introduce 
specific errors related to the curvature and particular interactions be
tween the measurement instrument and discontinuities of the surface, e. 
g., occlusions, different types of reflection, presence of facial hair. 
Consequently, current calibration methods that rely on few specific 
shapes are likely to neglect some contribution to measurement uncer
tainty in facial measurements. Moreover, when the task is face analysis, 
which, as mentioned, often relies foremostly on landmarking, i.e., the 
identification of specific cephalometric point, average error indicators, 
as per current standard and state-of-the-art, lack of the required degree 
of details to thoroughly associate measurement uncertainty to the task 
result. To the best knowledge of the authors, task-based uncertainty 
evaluation approaches for face analysis are still lacking in the current 
literature, also due to the recent introduction of the aforementioned 
measurement technologies. Accordingly, this work proposes a procedure 
to evaluate the metrological performances of the depth data acquired for 
face analysis. In this work, the Intel RealSense SR300, a structured-light 
RGB-D camera, is considered. 

The rest of the paper is organized as follows: Section 2 discusses the 
considered technology and presents the proposed methodology to met
rologically characterize the instrument. Section 3 presents and discusses 
the results. Finally, Section 4 draws conclusions. 

2. Materials and methods 

2.1. Measuring instrument 

Intel RealSense SR300 is the device considered in this work (see 
Fig. 1), a coded-light RGB-D camera particularly suitable for facial 
application, considering its performances in short-range scenarios. 

The expression coded-light identifies a subgroup of structured-light 
depth acquisition methodologies using spatial or temporal codes. The 
emitted light wavelength is in the infrared (IR) range, around 860 nm, 
safe and invisible to the human eye. A micro-electro-mechanical system 
(MEMS) mirror generates a set of predefined, and increasing spatial 
frequency coded IR vertical bar patterns to be projected on the scene. 
The IR camera resolution is 640 × 480 pixels, and each pixel is a square 
with a side of 3.6 μm. Furthermore, the IR camera is equipped with an IR 
band filter. For completeness, it is worth mentioning that the RGB 
camera is also equipped with an IR band filter not to be affected by the 
projected patterns. The depth reconstruction is performed by an ASIC 
and consists of two main steps: the codeword extraction and the depth 
generation phase. During the first step, the codeword referring to each 
pixel is extracted after the scene has been illuminated with different IR 
patterns. During the second step, the depth map is generated considering 
all the patterns projected on the scene through a pipeline which consists 
of codeword decoding and error correction, triangulation using code
words and camera calibration data, and post-processing to minimize the 
noise introduced by the temporal multiplexing, due to the motion 

sensitivity of this technique [49]. 
The measurement results in a depth point cloud, inherently regis

tered to an RGB image, arranged as a matrix of nx × ny pixels. Here, the 
relevant result is the depth, i.e., the distance between the measured 
object and the sensor, z = z(x, y), where x and y are the lateral co
ordinates that are discretized by the pixel matrix. Consequently, the 
depth map is a set of cartesian triplets D = {x, y, z(x, y)}. The operating 
range of the instrument is between 20 cm and 150 cm. The number of 
measured pixels is constant. Thus, the pixel size changes, and the greater 
the distance between the measurand and the sensors, the worse the 
lateral resolution. This also contributes to systematic errors of non- 
planarity and depth offset. Carfagni et al. showed, by calibration with 
standard artefacts, that the magnitude of the former depends on the 
position in the field of view, whilst the latter is quadratically dependent 
on the distance between the measurand and the sensor [48]. Moreover, 
they evaluated the metrological characteristics according to the current 
standard exploiting calibrated ball bars, resulting in a form probing 
error of 8.3 mm, a size probing error of 1.91 mm, a sphere spacing 
distance error of 6.05 mm and a flatness error of 6.88 mm. 

Given the working principle and the well-known occlusion problem, 
the interaction between the measurand surface and the projected light 
pattern is relevant and may result in non-measured points. If not prop
erly managed, these may hamper or distort subsequent analyses [50]. 
Limiting to face analysis applications, these can be sourced by shadowed 
areas, e.g., face portions behind nostrils, or due to uneven surface, e.g., 
due to the presence of beard and facial hair [51]. 

2.2. Face analysis methodology 

The measured frame is then exploited for the landmarking required 
for the face analysis. Landmarks, particularly the distances between 
them, are used for several scopes, ranging from face recognition, 
expression and emotion recognition, with applications in several fields, 
e.g., healthcare, marketing, industrial safety, manufacturing. Land
marking is carried out either by means of software [52,53] or by highly 
experienced operators. Ultimately, this operation results in finding the 
coordinates of a point L =

(
Lx, Ly, Lz

)
. Manual identification is still 

relevant for off-line operation and for calibrating and evaluating the 
accuracy of software for automatic detection and is considered and 
applied in this work. 

Several cephalometric points, i.e., landmarks, are available. In this 
work, five landmarks are considered, i.e., the two alae, the pronasal, the 
subnasal and the nasion, shown in Fig. 2. The operators relied on the 
definitions of the cephalometric landmarks given by Swennen et al. 
[54]. In particular, the ala is defined as the most lateral point on each 

Fig. 1. Intel RealSense SR300.  Fig. 2. The five considered landmarks.  
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alar contour, left and right. The pronasal is defined as the most anterior 
midpoint of the nasal tip; in case of a bifid nose, the pronasal is located 
on the most protruding tip. The subnasal is described as the midpoint on 
the nasolabial soft tissue contour between the columella crest, i.e., the 
plump external end of the nasal septum and the upper lip. Finally, the 
nasion is defined as the soft tissue midpoint contour of the base of the 
nasal root at the level of the frontonasal suture. The choice of these five 
landmarks is suitable for demonstrating in a simplified scenario the 
methodology, and it is representative of the instrument performances for 
some face analysis applications. In fact, facial movements due to ex
pressions induce changes in landmark positions. This work considers a 
landmark subset marginally affected by this variability to demonstrate 
the proposed methodology for task-based uncertainty evaluation. The 
results will be directly relevant for biomedical and face recognition 
applications, although the analysis should be performed on the full 
considered dataset. Whilst other cases, such as FER, which inherently 
rely upon landmarks more affected by expression-induced facial move
ments, would only require the application of the methodology on a 
different set of landmarks, which can be addressed in future works. The 
critical positioning of some of the considered landmarks, namely the 
alae, adds significance to the analysis, catering for the position identi
fication variability. Moreover, the above-mentioned definitions of 
landmarks allow for robust replication of landmarking amongst different 
operators. 

2.3. Task-based metrological characterization methodology for face 
analysis applications 

The scope of this work is evaluating the metrological performances 
of RGB-D camera for facial analysis applications. This will allow defining 
the operating range of the instrument and some good practices for that 
field. 

However, it is first necessary to identify influence factors to mea
surement uncertainty. These are either due to the instrument working 
principle, e.g., the projected pattern and distance from the measurand, 
instrument metrological characteristics, e.g., resolution, noise and flat
ness deviation, or to the specific application. In the case of facial anal
ysis, the latter includes the morphology of the face, the possible presence 
of occlusions, and the landmarking operation. Fig. 3 summarizes them 
through an Ishikawa diagram. 

The discussion of Section 2.1 allows identifying several influence 
factors pertaining to the first category, i.e., the minimum pixel size and 
the distance from the measurand limit the lateral resolution. As far as the 
depth measurement is concerned, sensor resolution is relevant. Addi
tionally, the projected pattern introduces some measurement vari
ability, which is carried out on a single frame. Moreover, the depth offset 
and the flatness deviation introduce systematic errors that require 

calibration. 
Furthermore, there are influence factors related to the specific task 

considered. These are the measurand, i.e., a face, which may present 
some occlusion or hamper interaction with the projected light pattern, e. 
g., because of facial hair, and the environment. In fact, measurements for 
facial analysis are hardly carried out in controlled conditions, and illu
mination may affect the measurement. Last, the landmarking method 
may induce some further variability. 

Performances of the instrument can be evaluated according to 
several indicators. As mentioned in Section 2.1, a first index of the 
quality of the measured data set is the ratio between the number of non- 
measured points and the overall number of pixels: 

pNM =

∑nx
i=1

∑ny
j=1I(z(i, j))
nxny

(1)  

which is the percentage of non-measured points pNM, where I(NaN) = 1 
and 0 otherwise, being NaN the Not-available Number, i.e., the value of 
a non-measured point. Secondarily, a quantitative metrological assess
ment is necessary. Because of how the landmarks are identified and 
exploited, it is apparent that the standard calibration of RGB-D sensors is 
not sufficient. In fact, to propagate uncertainty of landmark positioning 
to their distance, a map describing the expanded uncertainty, U, pixel- 
by-pixel, i.e., U =

(
Ux,Uy,Uz

)
, is needed. In the following, a proced

ure is outlined to evaluate these performance indicators and to assess the 
statistical significance of the influence factors to the considered 
instrument. 

2.3.1. Face measurement influence factors significance assessment 
According to the previous discussion, a design of experiments (DOE) 

approach has been deployed to evaluate the significance of possible 
influence factors to facial measurements. Table 1 summarizes the 
implemented full factorial design. 

Measurements are performed in a common room, against a white 
background, as this is the most common operating condition. The 

Fig. 3. Influence factors to facial analysis by RGB-D camera based on structured light. Red and cyan describe respectively first and second branches level.  

Table 1 
Considered factors and levels to assess the significance of influence factors to 
facial measurements.  

Factor Levels 

Measured subject 1-Female 2-Bearded 
Male 

3- 
Male  

Room light 0- Pitch 
black   

1- Artificial 
Light 

Distance from the 
sensor/cm 

25 40 55 70  
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possible effect of the measured subject is catered for measuring a young 
female and bearded male subject. The male subject was then asked to 
shave to include an additional level and directly compare the effect of 
facial hair presence on the same subject. The distance of the measured 
subject from the sensor is tested considering four equally spaced levels, 
designed based on experienced operators’ knowledge in face analysis, 
who discourage the use at distances greater than 60 cm. Accordingly, the 
longer distances were chosen in the neighbourhood of that threshold. 
The room illumination is a factor included for verification scope. In fact, 
the considered instrument, i.e., the Intel RealSense SR300, projects a 
structured IR light pattern. Thus, it should be insensitive to external 
illumination. The DOE run order is randomized. Thirty replicated 
measurements per condition were performed to estimate reproducibility 
so that the DOE results in 720 data. The replicated measurements are 
obtained measuring a 30′′ video at 30 fps. 

The outputs that are considered are the pNM and the standard un
certainty of the instrument along each measuring axis, i.e., uinstrum =
(
uinstrum,x, uinstrum,y, uinstrum,z

)
. However, the nature of those outputs hin

ders the application of the ANOVA [55,56]. In fact, pNM asymptotically 
distributes according to a normal distribution N (μpNM

, σpNM ). Correct 
estimators of the distribution parameters are: 

μ̂pNM
= pNM (2.1)  

σ̂pNM =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
pNM(1 − pNM)

nxny

√

(2.2) 

The DOE results in a set of 30 replicated measurements of pNM, per 
each of the 24 factor combinations, each of those with their own 

dispersion, i.e., Pf =
{(

pNMf ,r, σ̂pNM f ,r

)}

f
,r = {1,⋯, 30},f = {1,⋯, 24},

r, f⊂N. Consequently, the replications are realizations of the random 
variable pNMf N (E[pNMf ],σpNM ,w,f ). Therefore, the variability within each 
group of replicated measurements, σpNM ,w,f , has to be modelled as a 
mixture of variables [56]: 

σ̂p,w,f =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Var
[
pNM f

]
• 30 + E

[
σ̂pNM f

2
]√

(3) 

This modelling prevents straightforward ANOVA analysis applica
tion and requires performing pairwise hypothesis t-tests to investigate 
the presence of a systematic difference between the average of different 
factors combination. In particular, the null hypothesis, H0, and the 
alternative hypothesis, H1, are: 

H0 : pNM fi − pNM fj = 0 (4.1)  

H1 : pNM fi − pNM fj ∕= 0 (4.2)  

where fi, fj ∈ f . The test is carried out at a bilateral symmetric 95% 
confidence level and H0 is rejected if. 
(

pNM fi − pNM fj

)
∕∈

[
t0.025;29s ; t0.975;29s

]
(5)  

where tp,30 is the quantile of a Student’s t distribution with 29 degrees of 
freedom identifying the cumulated probability p, and s =

u
(

pNMfi − pNMfj

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ̂p,w,fi
2
+ σ̂p,w,fj

2
√

. 

As mentioned, the second output is the uinstrum. This indicator is 
computed for each factor combination exploiting the replicated mea
surements. Registration of the 30 replicated measurements to the central 
one is performed by means of iterative closest point (ICP) algorithm 
[57,58]. ICP finds the roto-translation matrix to align a pair of surfaces 
by minimizing the sum of squared distances between matching pairs of 
points [57–59]. The registration is necessary to correctly match the 
features and compensate unavoidable head micromovements, otherwise 
increasing the variance artificially. The result of the registration consists 

of a set of 30 depth maps, Df = zf (x, y) =
{(

xr,f , yr,f , zr,f

(
xr,f , yr,f

))}

f
. 

Although still arranged in a matrix points, the registered surfaces now 
share the same local coordinate systems, so that the variance of x-and y- 
absolute coordinates is not null. The ICP registration is essential because 
raw measured surfaces have the different local coordinate systems, 
which makes null the dispersion of the lateral coordinates. Therefore, 
after the registration has been carried out, per each factor combination, 
the measured points variance can be evaluated, enabling the mapping of 
the reproducibility of the depth map, i.e., Reprf =
{(

Var
[
xr,f

]
,Var

[
yr,f

]
,Var

[
zr,f

] )}

f
. This is exploited to evaluate the 

uinstrum, for a certain factor combination, as: 

uinstrumf =
{

uinstrumx, uinstrumy, uinstrumz
}

f (6.1)  

uinstrumf =E
[{(

Var
[
xr,f

]
,Var

[
yr,f

]
,Var

[
zr,f

])}

f

]
+
(

u2
Res,x,u

2
Res,y,u

2
Res,z+u2

Acc,z

)

(6.2)  

which combines the reproducibility, the resolution and the accuracy of 
the instrument through the law of uncertainty propagation [60]. The 
resolution is modelled assuming a uniform distribution with a range 
equal to the instrument resolution [60]. The accuracy requires calibra
tion. The results from [48] are exploited in this work, thus considering 
the accuracy as a type B contribution propagating with a uniform 
distribution. 

However, managing the resulting standard uncertainty is critical. 
Conversely, its square, i.e. the variance of the measurement, distributes 
according to a Chi-square distribution [56]. However, in any case, the 
variable distribution hinders the application of ANOVA [55]. Therefore, 
a hypothesis test based on Fisher distribution is resorted to investigating 
the presence of systematic differences in the u2

instrum due to the consid
ered factors. In particular, the hypothesis is: 

H0 : u2
instrumfi = u2

instrumfj ⇔
u2

instrumfi

u2
instrumfj

= 1 (7.1)  

H1 : u2
instrumfi ∕= u2

instrumfj ⇔
u2

instrumfi

u2
instrumfj

∕= 1 (7.2) 

The test is performed at a bilateral symmetric confidence level of 
95%, and the null hypothesis is rejected if. 

u2
instrumfi

u2
instrumfj

∕∈
[
F0.025;29,29 ; F0.975;29,29

]
(8)  

where Fp;29,29 is the quantile of the Fisher distribution with 29 degrees of 
freedom both at numerator and denominator identifying the cumulated 
probability p. 

2.3.2. Landmarking influence factors significance assessment 
Once the significance of influence factors pertaining to the mea

surement is evaluated, the face characterization, i.e., the landmarking, is 
addressed. In this work, as formerly discussed, manual landmarking is 
considered. Thus, the effect of operators carrying out this task is studied. 
A DOE with factors shown in Table 2 is considered. 

The measured subjects are the same formerly considered. The mea
surements introduced in Section 2.3.1 are exploited. Only two distances 
from the sensors are considered to reduce the number of the tests. The 

Table 2 
Considered factors and levels to assess the significance of operators performing 
landmarking to facial analysis.  

Factor Levels 

Measured subject 1-Female 2-Bearded Male 3-Male 
Distance from the sensor/cm d1  d2 

Operator 1 2 3  
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actual choice depends on the results of the DOE analysis discussed in 
Section 2.3.1. Three experienced operators are considered and are asked 
to place landmarks, according to the methodology outlined in Section 
2.2, on three different consecutive frames of the measurement, namely 
the fourteenth, the central one, i.e., the fifteenth, and the sixteenth. 
Therefore, the DOE results in 18 factors combinations with 3 replication 
each, hence 54 data. The considered output is the cartesian coordinates 
of the five placed landmarks Ll =

(
Lx, Ly, Lz

)

l, l ∈ {1,⋯, 5}⊂N. ANOVA 
is performed (at a 95% confidence level) to investigate if operators 
introduce systematic differences in the average estimated coordinate. 

Additionally, ANOVA variance modelling allows estimating the 
reproducibility of the landmarking coordinate due to the operator, 
Reprop. If the null hypothesis, i.e., no systematic differences are present, 
cannot be rejected, the reproducibility of the landmarking is the total 
variance. Conversely, if the null hypothesis has to be rejected, the 
variance within the group identified by the operator is considered. 

2.3.3. Evaluation of measurement uncertainty 
The evaluation of the task-based measurement uncertainty for the 

landmarking operation can be finally carried out. Per each landmark 
coordinate, , the following metrological model [60,61] is considered, 
in accordance with the highlighted influence factors from Fig. 3: 

(9) 

In Eq.(9), Acc is the instrument accuracy, is calibrated and includes 
the effect of the flatness deviation; Res is the resolution contribution, 
which is either vertical or lateral, depending on the considered coordi
nate. Two reproducibility components are included, one due to the facial 
measurement, which is modelled as Reprmeas = Reprf , and the second 
due to the operator. All the above referenced terms, with the obvious 
exception of which is an average value, are random variables with 
zero mean and (non-zero) standard deviation that represent the metro
logical characteristics of the system. The availability of a pixel-by-pixel 
map of the accuracy and measurement reproducibility avoids the asso
ciation of average variability contribution evaluated on the whole 
measured surface [58,62]. 

Variability contributions, u2
w ( ), are combined and propagated 

according to the law of uncertainty propagation [60], which in the case 
at hand, allows evaluating the standard uncertainty of a landmark co
ordinate as: 

(10) 

In this work, the accuracy is included as a non-statistically evaluated 
contribution, i.e., a type B contribution, relying upon the calibration 
reported in Carfagni et al. [48]; accuracy includes bias and is propagated 
as a uniform distribution. The resolution is a type B contribution, 
propagated as a uniform distribution. The reproducibility of the face 
measurement and analysis represent the task-based effect on the mea
surement precision and are evaluated as statistical contribution, i.e., 
type A, as discussed in Section 2.3.1 and 2.3.2, which distribute with a 
normal distribution. 

Expanded uncertainty is then evaluated at a confidence level of 95% 
by means of the coverage factor k, assuming a Student’s t distribution, 
as: 

(11.1)  

(11.2)  

where are the degrees of freedom [60]. 
The evaluation of the expanded uncertainty of the landmark co

ordinates results in U(L) =
(
ULx ,ULy ,ULz

)
, This result can be exploited to 

test the adequacy of the measurement with respect to the expected 
minimum requirements. In fact, the landmarking operation must be 
carried out with a tolerance of t = 4 mm, with respect to the theoretical 

landmark position [63–68]. The conformity to this specification can be 
investigated by performing a tolerance verification [69]. This requires 
comparing the specification interval centered in the landmark, i.e., IT =

L ± t = [LLT,ULT], and the uncertainty interval, i.e., IU = L ± U(L) =

[LLU,ULU]. The verification compares the two interval and requires 
evaluating the acceptance interval: 

(12.1)  

ULA − LLA > 0 (12.2) 

The acceptance interval reduces the specification zone by a quantity 
proportional to the standard uncertainty of the measurement of a guard 
band factor g. Indeed, the acceptance zone must not be null, so that the 
condition to verify the compliance to tolerances: 

(13)  

which is intended to be evaluated, independently, along each coordinate 
axis. Ultimately, the creation of the acceptance interval considers that its 
extreme values may be affected by uncertainty. Thus, the specification 
zone must be reduced to be conservative in the verification. 

3. Results and discussion 

3.1. Face measurement influence factors significance assessment 

The first, the DOE introduced in Section 2.3.1 and aimed to identify 
relevant influence factors to facial measurement is performed. The 
measurements are performed with a field of view resolution of (640 ×
480) pixel. This corresponds to the resolution, which depends on the 
distance from the sensor (see Section 2.1), on the coordinate axes that is 
reported in Table 3. 

The percentage of non-measured points, pNM, the measurement 
reproducibility map, Reprmeas, and the MSE are evaluated according to 
the methodology outlined in Section 2.3.1. 

The analysis of the considered factors influences on the pNM is per
formed by the discussed pairwise t-test, which can also be addressed 
through graphical representation, reported in Fig. 4. At a 95% confi
dence level, both the measured subject and the distance from the sensor 
introduce significant systematic differences in the percentage of non- 
measured points. In particular, the plot in Fig. 4 shows a qualitative 
quadratic effect on pNM due to the distance. Also, the presence of facial 
hair in the measured subject 2 significantly increases the pNM. The 
verification factor, i.e., the room light, does not have a significant effect 
on the output variable, as expected and consistently with the instrument 
working principle. The verification factor supports and validates the 
results of the implemented DOE. 

Then, the evaluation of the point-by-point reproducibility ascribed to 
measurement influence factor, i.e., Reprmeas = Reprf , is carried out and 
allows evaluating the uinstrum along the three coordinate axes. The model 
in Eq. (6) is applied, where the accuracy of the instrument is propagated 
as a type B contribution distribution with a uniform distribution. Relying 
upon the calibration of [48], and considering that the measured faces 
were at the center of the field-of-view, a conservative estimation of a 
range of 1 mm could be considered. Resolution is also propagated as a 
type B contribution, associating a uniform distribution with a range 

Table 3 
Resolution of the coordinate axes at different distances from the sensor.  

Distance from sensor/cm Resolution/mm 

x, y z 

25  0.548 0.001 
40  0.800 
55  1.175 
70  1.714  
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equal to the resolution step, as reported in Table 3. 
The resulting u2

instrum is analyzed performing pairwise F-test at 95% 
confidence level, according to which the distance from the sensor is the 
only factor introducing significative differences between instrument 
reproducibility. Fig. 5 shows qualitative trends of the output depending 
on the considered influence factors, confirming the quantitative result, 
and suggesting a quadratic effect of the distance on the uinstrum. 

The results show that, for facial measurements, the instrument per
forms best at short range and significantly worsens both in terms of non- 
measured points and reproducibility at distances greater than 55 cm, 
and the measured subject has a significant effect. 

3.2. Landmarking influence factors significance assessment 

These results are exploited to set up the second DOE, as discussed in 
Section 2.3.2, to investigate the influence factor to face analysis. In 
particular, the two investigated distances are 25 cm and 55 cm, being 
the extremities of the operative range. The five considered landmarks, i. 

e., the two alae, the pronasal, the subnasal and the nasion, are manually 
placed by three operators, as shown in Fig. 2, on three different frames. 
ANOVA analysis is performed to investigate the effect of the operators. 
Because of their statistically significant systematic effect on the face 
measurement, the measured subject and distance from the sensor are 
considered blocks of the experimental design, as their effect could 
overshadow the operators’ variability. Consequently, individual ANOVA 
analyses tackling the sole operator’s effect are performed, and Table 4 
reports the results, highlighting only the conditions with a p-value lower 
than 5%. As it can be noticed, operators sometimes introduce a sys
tematic difference in landmarking. This is severely significant at greater 
distances between the face and the sensor. 

Accordingly, the variability due to the operator Reprop is estimated, 
in terms of variance u2

Reprop
, as the variance within the operator groups, in 

the case a systematic difference is present, or as the total variance. It is 
worth remarking that the particular choice of how to analyze the second 
DOE enabled the evaluation of u2

Reprop 
so that it does not include other 

contributions already present in u2
Reprinstrum

. 

Fig. 4. Results of pNM from the first DOE (see Table 1). The effect of influence factors to face measurement can be appreciated. Error bars represent 95% confi
dence intervals. 

Fig. 5. Results of the instrument reproducibility uinstrum along the (a) x-axis, (b) y-axis and (c) z-axis.  
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3.3. Evaluation of measurement uncertainty 

The uncertainty of the landmarking operation is then propagated 
according to Eq. (10), and the expanded uncertainty is computed. 
Table 5 reports the expanded uncertainty of the landmarking operation, 
evaluated at a 95% confidence level with a coverage factor equal to 2, 
assuming 30 degrees of freedom in accordance with the P.U.Ma method 
[70]. The analysis of uncertainty propagation shows that the most 
relevant contribution is the variability due to the operators. 

The task-based uncertainty evaluation allows performance verifica
tion. The evaluation of the expanded uncertainty of the landmark co
ordinates describes an elliptical envelope within which the landmark 
can be positioned considering the used measuring instrument and the 
applied face analysis method, as shown in Fig. 6. The elliptical envelope 
maximizes the uncertainty volume with respect to a right prism [71]. 

This result is exploited for tolerance verification in compliance with 
ISO 14253-1:2017 [69]. The results of the verification of Eq. (13) are 
reported in Table 6. 

Table 6 indicates clearly that the instrument suitability for facial 
measurement and analysis depends significantly on the measured sub
ject and the distance from the sensor. In particular, the presence of facial 
hair (measured subject no. 2) at a larger distance hinders performing 
precise measurements. Criticalities are present for alae z-coordinate. 
This can be explained by the fact that small lateral variation in the alae 
region may lead to significant changes in the z-direction, as it may 
involve moving from the intersection between the nose and the cheek to 
the nose side, for example. Consequently, landmarks positioned on 
highly sloped regions are liable of being estimated with greater uncer
tainty, as in the alae cases. In the case at hand, the operators were the 
largest contribution to measurement uncertainty, despite not being 
significantly different in their behavior, as reported in Table 4, result 
that is consistent with the large variability induced by the inherent 
difficulty of landmarking positioning. 

4. Conclusions 

This work developed a task-based evaluation of measurement un
certainty for face analysis based on customer grade 3D cameras. A 
methodology was proposed to evaluate significant influence factors and 
propagate uncertainty contribution. The method was applied to a case 
study to metrologically qualify performances of Intel RealSense SR300 
RGB-D camera, a coded-light device typically adopted for short-range 

applications. Results show that significant effects on the measure
ments are introduced by the measured subject, the distance from the 
sensor and the operator performing the landmarking. The latter is 
relevant when manual landmarking is performed, which at the state-of- 
the-art is necessary to define training and calibration datasets for 
automatic analysis software, and for specific tasks such as annotation of 
cephalometric points in pre-surgery planning. The evaluation of uncer
tainty formally verifies the adequacy of the considered camera to face 
analysis. Moreover, the work outlines guidelines and best practices that 
can help design applications in several fields that require face analysis, i. 
e., industrial, medical, marketing. In particular optimal performances, 
considering physical measurement setup and flexibility and metrolog
ical properties, are short distances. A suitable best practice may suggest 
working at 40 cm, provided the evaluated instrument standard uncer
tainty. The following considerations can explain this trade-off: lower 
distances may suffer from artefacts due to the vertical bars of the pat
terns at different spatial frequencies and the variability caused by the 
temporal multiplexing used to generate the depth map from the code
words. Facial applications imply the presence of humans, whose micro- 
movements in front of the camera are unavoidable and deepen the risk 
of introducing errors in the depth generation phase. On the other hand, 
the loss of resolution rapidly worsens when increasing the distance be
tween the camera and the subject in such a way that an acceptable 3D 
facial reconstruction is no longer possible beyond 55 cm. 

The development of consumer-grade depth cameras has made 
accessible machine vision technologies and methods, speeding up its 
diffusion in various applications, including face analysis and, particu
larly, face recognition. The methodology outlined in this study can be 
applied in future work to compare performances of different measuring 
instruments and to evaluate performances of automatic landmarking 
software. 
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