
CIRP Annals - Manufacturing Technology 70 (2021) 451�454

Contents lists available at ScienceDirect

CIRP Annals - Manufacturing Technology

journal homepage: https:/ /www.editorialmanager.com/CIRP/default.aspx
Uncertainty evaluation of small wear measurements on complex
technological surfaces by machine vision-aided topographical methods
Gianfranco Genta*, Giacomo Maculotti
Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
A R T I C L E I N F O

Article history:
Available online 13 May 2021
* Corresponding author at: Submitted by Gianfranco G
E-mail address: gianfranco.genta@polito.it (G. Genta)

https://doi.org/10.1016/j.cirp.2021.04.057
0007-8506/© 2021 CIRP. Published by Elsevier Ltd. All ri
A B S T R A C T

Wear assessment is an essential feature within the Industry 4.0 framework to optimise machining and con-
trol durability of components made of innovative materials. Complex topographies often make wear mea-
surement a challenging task. Literature tackles it by comparing the final topography with the unworn state,
either by empirical methods or by registration via machine vision algorithms. This paper develops a frame-
work to evaluate the related measurement uncertainty, so far lacking, by exploiting instruments metrological
characteristics and statistical modelling. This framework is applied to an industrially relevant case study to
compare the performances of accredited methods for wear measurement available in literature.

© 2021 CIRP. Published by Elsevier Ltd. All rights reserved.
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Fig. 1. Topography of a polished cermet (SiCp/Al) with a wear track: the high rough-
ness and some pull-outs overshadow the wear track.

enta, Torino, Italy.
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1. Introduction

A large amount of energy is consumed worldwide to overcome
friction, liable to induce wear curtailing service life. A substantial part
of developed countries’ GDP is spent facing wear-related costs [1,2].
Within Industry 4.0 and sustainable industry framework, innovative
materials, manufacturing processes, and surface technologies are cur-
rently developed to increase durability and improve mechanical sys-
tems’ energy efficiency. Hard coatings, e.g. TiN [3], Al2O3, and cermet,
e.g. WC/TiAlV [4], Ti(C��N), are exploited to reduce wear, e.g. of
moulding [5] and cutting [6] tools. Similarly, optimisation of related
manufacturing [7,8] and subsequent finishing [9,10] processes have
been carried out to control tribological properties of manufactured
components. Recent surface technology applications are typically
characterised by complex topographies and a small amount of wear
because of hard coatings or wear mechanism, e.g. fretting. Complex
topographies may be inherent in components freeform geometry, e.
g. moulds [5], turbine blades [11], or due to surface features, such as
voids created by pulled-out ceramic reinforcement particles during
finishing [9], see for example Fig. 1. Such technological surface com-
plexity challenges traditional wear evaluation methods based on gra-
vimetry or contact profilometry. Recently developed approaches rely
upon topographical measurements to perform a comparison with the
unworn state aimed to estimate wear. These approaches either resort
to empirical comparisons [12] or to registration methods supported
by machine vision algorithms [13].

Quality control of manufacturing systems depends upon reliable
estimates of the precision of characterisation results. However,
descriptions of methods to evaluate measurement uncertainties of
these characterisation approaches lack in literature. Thus, this paper
describes an approach to estimate measurement uncertainty of some
of the most accredited methods for evaluating minute amounts of
wear on complex technological surfaces, within a metrological
approach. Section 2 presents main methods available in literature to
evaluate wear, and Section 3 develops estimation of their uncer-
tainty. Section 4 compares the considered methods performances on
an industrially relevant case study, i.e. a SiCp/Al cermet coating, and
Section 5 finally draws conclusions.
2. Wear evaluation methods

Wear is commonly evaluated in terms of volume of material mod-
ified by relative motion between contacting surfaces. This definition,
related to a loss of function, encompasses a more general situation in
which material is both abraded away and plastically displaced or
added to debris, e.g. galling [14].

When measuring small amounts of wear volumes on complex
topographies, surface topography-based methods outperform con-
ventional approaches, such as gravimetry. The former provide the
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Fig. 2. Ishikawa diagram of wear evaluation measurement uncertainty influence fac-
tors: red, cyan and green describe respectively first, second and third branches level.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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necessary accuracy and precision, together with straightforward use,
speed and information content, to thoroughly describe worn-out sur-
faces by identifying different contributions to the overall damage or
loss of functionality [14]. This is typically achieved by evaluating the
volumes of wear, Vw, galling, Vg, and total damage VD, i.e.:

VD ¼ Vw þ Vg ð1Þ
These can be obtained by means of a numerical approach, by dedi-

cated software, as:

VD ¼ ps
XN�1

j¼2
Sj þ

ps
2

S1 þ SNð Þ ð2:1Þ

Sj ¼ ps
XM

i¼1

����zi
���� ð2:2Þ

assuming the surface as described byp N parallel profiles at a sam-
pling distance ps (the pixel size), along the y-axis; Sj is the related
cross-section area, M is the number of sampled points in the j-th pro-
file, and zi are the surface heights. The individual contributions of Vw

and Vg are obtained considering only the zi below or above the
unworn reference surface. Alternatively, they can be obtained by the
void volume Vv and material volume Vm [1], i.e. two surface texture
parameters:

Vw ¼ Vv ¼ K zmax � hð Þ �
XNbin

j¼Bþ1
Dzjmrj

h i
ð3:1Þ

Vg ¼ Vm ¼ K
XB

j¼1
Dzjmrj ð3:2Þ

where h ¼ SmcðmrÞ, i.e. the inverse of the areal material ratio function
at the material ratio mr; Nbin is the number of bins into which the
material ratio curve is discretised and B the bin including the thresh-
old zi. K is a factor to convert the relative volume into the most appro-
priate unit and represents the horizontal area and is K ¼ npp2s , with
np the number of pixels.

Measuring small wear volumes on complex technological surfaces
is challenging since form must be removed, and texture may contrib-
ute significantly to the values in Eq. (1). Thus, literature resorts to
comparison with the unworn surface to remove these topography
contributions. In the following, some currently used methods are
described. These methods require measuring the surfaces both before
and after the wear process has taken place.

2.1. Empirical comparison method

This recently defined approach, employed to characterise fretting
wear on gear tooth flank and turbine blades [11,12] and capable of
managing thermal or plastic deformation collateral to wear, entails
removing the form on both measured surfaces and empirically identi-
fying the worn region. Filtering is dispensed with, as liable to remove
topographical components introduced by the wear phenomenon.
Then, Vg and Vw are evaluated as the change of volume associated to
peaks, Vp, and holes, Vh, respectively according to Eq. (2); weighing
factors K cater for the corresponding horizontal surfaces measured
before and after wear:

VD ¼ Vh;f � Vh;i

Ki
Kh;f

� �
þ Vp;i

Ki
Kp;f � Vp;f

� �
ð4Þ

where the subscripts i and f stand for initial and final condition.
However, such a simple and computationally light approach may

suffer from the arbitrary selection of the considered region and be
affected by the selection of fitting for form removal.
2.2. Machine vision-aided comparison method

The former issues may be tackled by registering the two measured
surfaces and computing the difference pixel-wise. The subtraction aims
to remove the form and other topographical scales irrelevant to wear
phenomenon, generally meant as overall damage, thus dispensing with
filtering, and avoiding arbitrary selection of the worn region [13].
Machine vision algorithms, e.g. Iterative Closest Point (ICP), are typically
exploited for this operation [13]. They achieve the registration by esti-
mating the roto-translation matrix through an iterative procedure
aimed at minimising the mean squared distance of a subset of points of
either surface. The algorithm relies upon an initial random subsampling,
based on a k-Nearest Neighbours (kNN) clustering, to reduce the
computational cost and then iterates to achieve the solution. At each
iteration, the subset of nearest points is exploited to solve the least-
square problem of the matrix computation [15]; the algorithm stops
when either a maximum number of iterations or a minimum RMSE is
reached. The drawback of high sensitivity to initial conditions, liable to
mislead the solution towards a local minimum [15], may be overcome
by a preliminary registration step, as done through othermachine vision
algorithms developed for features recognition [13]. After carrying out
the registration, the surfaces are subtracted and, on the resulting differ-
ence, wear is computed according to Eq. (1).

3. Measurement uncertainty in wear evaluation

Evaluation of measurement uncertainty is essential to assess the
precision of measurement methods, providing users with confidence
in their adoption and ultimately enabling comparison of their per-
formances. For the wear evaluation methods introduced in Section 2,
this is lacking in literature. As Eq. (1) represents a mathematical
model linking an output VD ¼ f ð#Þ and some input #, the uncertainty
can be evaluated through the law of variance propagation [16]. It
quadratically combines the standard uncertainty contributions to the
related model inputs, which, in the case at hand, are the standard
uncertainties of the three measurement coordinate axes, i.e. u(x), u
(y) and u(z), and of the pixel size, u(ps). Their estimation entails
highlighting the main influence factors pertaining to three main
sources: parameter evaluation, measuring instrument and compari-
son method, see Fig. 2.
The parameter evaluation method, i.e. numerical (NUM) by Eq. (2)
or through the material ratio curve (MRC) by Eq. (3), affects the evalua-
tion of individual contributions. Current tribological practices require
evaluating the average volume [14]; hence, the standard uncertainty
of the average is computed. If u(x), u(y), u(z) and u(ps) are known and
law of variance propagation is applied, respectively, we obtain:
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A compact, thorough and practical description of measuring

instrument’s metrological performances is provided by the



Table 1
Wear volume evaluation methods considered in the comparison.

Volume evaluation Numerical Material ratio

Comparison
method

Empirical VD;EC �
Machine vision ICP VD;ICP;NUM VD;ICP;MRC

SURF+ICP VD;SURFþICP;NUM VD;SURFþICP;MRC

Fig. 3. (a) Anton Paar TRB tribometer and (b) CSI Zygo NewView 9000 used in the case
study.
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metrological characteristics (MCs), i.e. characteristics of the measuring
equipment, which may influence the result of measurement, may require
calibration and have an immediate contribution to measurement uncer-
tainty [17]. They contribute to the uncertainty of the measurement
axes as:

uz;MC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
NF þ u2

z þ u2
Rep

q
ð8:1Þ

ux;y;MC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
WR

þ u2
x;y

q
ð8:2Þ

where uNF is the combined effect of noise and residual flatness, ux;y;z

is the effect of linearity deviation for each axis, uRep the repeatability
and uWR the lateral resolution [18]. u(ps) is estimated assuming a tri-
angular distribution [18] and uRep as the surface topography repeat-
ability [19]. The topography fidelity contribution is neglected since,
although several artefacts and calibration methods for this MC are
available, none is agreed upon; how to propagate obtained calibrated
value in uncertainty budget for any topography is therefore still a
challenge [17].

3.1. Empirical comparison method

Empirical comparison (EC) may require form removal. The resid-
uals of this operation, hence, contribute to u(z) adding a contribution
equal to their RMSE, as:

uz;EC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
z;MC þ u2

z; RMSE�form

q
ð9Þ

whilst no further contribution is added on x- and y-axis with respect
to Eq. (8.2). According to the method definition, standard uncertainty
of inputs of Eq. (4) is obtained plugging Eq. (9) and Eq. (8.2) in Eq. (5)
and Eq. (7). u(VD;EC) is obtained subsequently applying the law of var-
iance propagation to Eq. (4).

3.2. Machine vision-aided comparison method

Complex ICP algorithms are affected by several influence factors,
amongst which initial conditions impact most on registration error
[15]. Initial conditions’ effect is implicitly catered for when estimating
the uncertainty of the registration and the residuals. Despite machine
vision algorithms for feature identification to improve the initial con-
ditions are stochastic, their contribution to uncertainty is marginal,
whilst it is more relevant to bias [15]. The algorithm solving the roto-
translation matrix performs a least-square minimisation. While
methods to estimate the covariance matrix of transformation param-
eters are available [15], they tend to underestimate uncertainty, as
they only exploit the kNN-set of data. Moreover, although featuring a
stochastic component, the selection of this subset has a negligible
contribution to the registration uncertainty [15]. According to GUM
[16], a simplified and conservative approach is outlined, estimating
ICP contribution to the three coordinate axes’ measurement uncer-
tainty by adding the RMSE of residuals computed on the unworn
region to Eq. (8). After registration, a difference between the fixed
and the ICP-registered topography is performed and characterised.
Thus, the three coordinate axes standard uncertainty is:

ux;y;ICP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
x;y;MC þ u2

x;y; RMSE�ICP

q
ð10:1Þ

uz;ICP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2u2

z;MC þ u2
z; RMSE�ICP

q
ð10:2Þ

which has to be plugged in Eq. (5) and Eq. (6) to estimate the uncer-
tainty of the wear volume.

4. Case study

Wear volume measurement methods presented in Section 2 are
compared by a metrological approach, relying upon measurement
uncertainty evaluation developed in Section 3, on a practical case
study. Table 1 summarises methods considered in the comparison. In
this work, to improve the initial condition of the ICP, the Speed Up
Robust Feature (SURF) recognition algorithm was exploited, one of
the most recent and robust methods amongst those available in liter-
ature [20].
An aluminium based cermet with SiC particle reinforcement, SiCp/
Al, has been considered. Thanks to its low density, high elastic modu-
lus and thermal conductivity, this cermet finds application as a coat-
ing in aerospace and automotive fields [21]. Finishing this material is
particularly challenging and is currently the object of extended
research [21]. A conventional pin-on-disc test was performed by the
Anton Paar TRB tribometer, see Fig. 3(a): a counter body (a 10.0mm
diameter Al2O3 sphere) applied a force of 2 N on linear alternating
motion with a stroke of 4mm at 2 Hz over a distance of 10m. The
previously polished sample was cleaned with acetone after the test,
and the wear track was characterised according to methods discussed
in Section 2. The surface topography was measured both before and
after the tribotest by a Coherence Scanning Interferometer (CSI) Zygo
NewView 9000, see Fig. 3(b), with a Michelson 5.5£ objective lens
with numerical aperture 0.15, maximum measurable slope of 7.27°,
pixel size of 1.56 µm and optical resolution of 1.90 µm. Topographical
characterisation was carried out with the state-of-the-art commercial
software MountainsLab v8.0; ICP registration was performed by cus-
tom script in Matlab 2019b.
Fig. 1 shows the topography of the SiCp/Al after the wear test.
The form and high roughness, despite polishing, hinder identifica-
tion of the wear track. Wear evaluation methods discussed in
Section 2 are applied. The form is removed, for the EC approach
according to the definition, by fitting a high-order polynomial
and, for the machine-vision aided approach, by subtracting the
registered topographies. Fig. 4 shows form removal results. Sub-
traction yields better results since it inherently removes all the
spatial scales irrelevant to wear assessment and results in a
smaller surface heights range.

Wear volume is computed according to Section 2; results are
shown in Fig. 5 with uncertainty bars computed with a coverage fac-
tor of 2 (computed with 30 degrees of freedom at 95% confidence
level [16]) according to equations developed in Section 3. Table 2
summarises measurement uncertainty contributions: instrument’s
metrological characteristics are introduced as type B contributions,
exploiting values available in literature of similar instruments [18].
Repeatability is estimated as a type A contribution, relying on 30
measurements of the sample surface before wear [19]. It may be
noticed that introducing the SURF feature recognition to initialise the
ICP improves the RMSE of the ICP, on the z-axis. EC exhibits inferior
precision performances and yields a systematically different estima-
tion of wear. This can be ascribed to the arbitrary selection of the
region, lack of filtering, and form removal that may remove relevant
scales or introduce distortions.



Fig. 4. Topographies of SiCp/Al cermet with wear track for evaluation of wear volume.
Form removed by (a) high-order polynomial for the empirical comparison and (b) sub-
traction of ICP-registered topographies.
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Conversely, machine-vision based methods are more precise and
in better agreement. The material ratio curve approach, because of its
definition, see Eq. (3) and Eq. (6), is more precise and more sensitive.
Thus, it highlights a systematic difference in the results obtained via
the ICP, depending on the application of SURF algorithm or not,
which is not otherwise detected. Setting initial conditions by SURF
algorithm also improves the relative accuracy between the numerical
and material ratio approach to estimate wear. The pin-on-disc’s con-
ventionality validated uncertainty evaluation and enhanced differen-
ces amongst the methods. Currently, the approach is being applied to
characterise more complex, practical applications. Preliminary
results, related to a gear tooth flank fretting (42CrMo4 steel, 15 teeth,
modulus 5mm, pressure angle 30°, tested for 106 cycles with a tor-
que of 300 Nm at 2000 rpm), are reported in Fig. 5 secondary axis,
showing similar precision and systematic differences amongst the EC
and machine-vision aided method (ICP). The greater topographical
complexity hampered the application of SURF method to improve
initial conditions of ICP.
Fig. 5. Comparison of methods considered to estimate wear volumes. Uncertainty bars
are computed with a coverage factor of 2 (i.e. at 95% confidence level).

Table 2
Uncertainty contributions to the wear volume measure-
ment methods concerning SiCp/Al cermet.

Contribution x / µm y / µm z / µm

uMC 0.908 0.908 0.010
uRMSE�form � � 2.158
uRMSE�ICP 0.288 0.116 0.531
uRMSE�SURFþICP 0.288 0.116 0.440
5. Conclusions

Measuring small wear volumes on complex topographies is a
challenging task, albeit necessary to characterise tribological per-
formances of innovative freeform components, hard materials and
ceramic composites. This work developed an original framework to
evaluate measurement uncertainty of some of the currently accred-
ited methods available in literature to perform that task. The
framework, combining metrological characteristics of measuring
instruments and statistical modelling of evaluation procedures,
enabled comparison amongst methods. Application of machine vision
registration algorithm (i.e. ICP), improved by feature recognition,
appears to provide better metrological performances. Future works
will focus on the application to practical cases and further improve-
ment of ICP by other machine-vision approaches.
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