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Abstract
This article focuses on the inference on the errors in manufactured parts
controlled by using measurements devices. The characterization of the part
surface topographies is core in several applications. A broad set of properties
(tribological, optical, biological, mechanical, etc.) depends on the micro- and
macrogeometry of the parts. Moreover, parts usually show typical determinis-
tic geometric deviation pattern, referred to as manufacturing signatures, due to
the specific manufacturing processes and process setup parameters adopted for
their production. In several situations, the measurements may also be affected
by systematic errors due to the measurement process, that might be caused, for
example, by a poor part alignment during the measurement process. Measure-
ment techniques and characterization methods have been standardized in the
International Standard ISO 25178, defining parameters characterizing the sur-
face topography and supplying methods and formula adapt to deal with this
issue computationally. In the present article, we consider a type of spatial depen-
dence between measured values at different points that suggest the use of the
variogram to identify patterns in the parts. We offer a comparison, based on a
real set of measures, between the latter approach and the conventional as a test
of the efficient performance of our findings.
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1 INTRODUCTION

The surface topography of components draws its origin both by processing conditions and by process parameters.1,2 From
a geometrical perspective and according to Leach,3 the surface topography (simply surface) of a component is its overall
surface structure, consisting of the form (the underlying shape) and the texture, that is, what remains after removing the
shape. Being intertwined with the manufacturing process, often the surface bears a systematic pattern which is unique
and distinctive of the process: the so-named manufacturing signature.4,5 Experts estimate that 10% of component failures
depend on an imperfect realization of topographical specifications.3 Consequently, measuring and characterizing the
surface topography is core to understand and qualify manufacturing processes, to support the process optimization, and
ultimately to enable the identification of deviations from the in-control state.
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In the last few years, the industry has targeted the design of surface topography to engineer the functionality of prod-
ucts and increase their quality and performances. Topographies can control a wide range of functional properties,6,7

because most relevant physical phenomena, involving the exchange of energy and information, take place on the surfaces.
Structured surfaces and texturing are relevant in several fields: biomedicine, where the microfluidics devices texturing
aims to control and trigger the release of drugs in the patients based on physiological signals;8 robotics and manufactur-
ing, which exploits texturing surfaces of handling components of robots to enhance the grip on objects to support the
increasing human–machine interactions;9 automotive for achieving a significant reduction of both fuel consumption and
pollutant emission by texturing engine components.10,11 Thus, the increasing demand for enhanced performances pulled
fundamental research in electronics, energy, IT, optics, tribology, and other fields to enable surface functionalization.

All these applications require flexible and fast quality inspections relying on thorough, accurate and specific charac-
terization methods, to meet customers demands, within the framework of Industry 4.0, and to deal with big data and
interconnected cyberphysical systems.12-14 To this aim, surfaces measurement requires dense sampling through appropri-
ate technology.15 Nowadays, new optical technologies are available to overcome the limitations of conventional inspection
technologies based on contact probes (coordinate measuring machines, CMM) and contact stylus instruments.3,16 CMM
may require too long times, hence high costs, to achieve an adequate sampling density. In some cases, the physical dimen-
sion of the probe forbids the measurement of statistically representative samples of the surface.16,17 Efficient surface
modeling is a base requirement to cope with the challenges of surface characterization in the modern manufactur-
ing of Industry 4.0,18 where free-form surfaces,19 additive manufacturing surfaces,20,21 and other nonstandard features
appear.22-24 Different geometrical features, properties, and scales might be targeted depending on purposes and surface
technology. In this article, the interest is focused on the height and width of features, in order to control the texture
regularity, in terms of periodicities and isotropy.

Recently, literature has developed statistical modeling based on Kriging methods to aid inspection designers to over-
come constraints and to enhance the informativeness of the measurement without increasing costs. In the following, we
offer a review of this Kriging application.

1.1 History

Pedone et al.25 contains a first attempt to use Kriging modeling for the online design of inspection plans operated by CMM.
The probing of a few point only leads to the assessment of nominal dimensions and shape, with benefits on the economy
of the inspection process. The inspection plan as a sequential experiment to be designed online has shown the trade-off
between accuracy and costs, exploiting an updating of the Kriging model iteratively, according to the new incoming data,
and using the predictions from the updated model for selecting the next point to inspect. The article discussed two case
studies about the verification of form tolerances, straightness, and roundness. Subsequently, Vicario et al.26 have consid-
ered flatness tolerance verification, while Pistone and Vicario27 discussed the improvement of wafer inspection strategies.
Later on, Ruffa et al.28 addressed the comparison between conventional and Kriging-based inspection strategies, from
the perspective of measurement uncertainty. Ascione et al.29 outlined adaptive inspection methods for coordinate mea-
surement system based on Kriging modeling. Other authors have exploited the capability of Kriging models to detect
geometrical and dimensional errors. Kolios et al.30 developed predictive models for the reliability of cutting tools. Song
et al.31 detect a geometrical deviation in additive manufacturing processes for polymers and Wang et al.32 outlined cor-
rective models for this building strategy. Kriging models are of use also in the assembling to detect, and later correct,
nonlinear assembling errors for compliant33 and composite materials.34

The Kriging modelization requires detecting and, consequently, modeling the correlation between measured
responses. However, the choice of the most suitable class of correlation models, among the several available options, is
not trivial. Several researchers, mostly geostatisticians, favor the use of the variogram, or semivariance diagram, in the
choice of the correlation function. It is very informative about spatial dependence, showing the averaged square differ-
ence in the response values between a pair of measurement points separated by a given distance. Moreover, the variogram
is equivalent to the correlation function for stationary processes, as frequently occurs (see Cressie35).

This finding suggested further investigations on the relationship between variogram and correlation, see Pistone
and Vicario.36,37 In the former case, the authors considered Gaussian vectors with constant variance. They showed
how to parametrize the distribution with the variogram and, conversely, how to characterize all the Gaussian distribu-
tion with a given variogram. In the latter, they discuss the constraints imposed on the set of parameters defining the
variogram.
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Recently, Ruffa et al.38 and Vicario et al.39,40 discussed the effectiveness of using variogram in other practical situations.
Finally, a relevant article is Vicario and Pistone,41 whose main points provide the base the content of this article.

1.2 State of art

Complex interactions between materials and manufacturing tools during the process can affect the surface texture,
ultimately introducing manufacturing signatures. In most mechanical processes, such as machining or additive manufac-
turing, the process is repetitive and periodic. This situation results in a periodic texture and a spatial correlation between
measured surface points. From here, the suggestion to use the variogram to investigate an existing surface topography
correlation and infer geometrical properties of the surface. In Vicario and Pistone,41 the authors, exploiting simulative
approaches, analyzed the variogram in the presence of both a noticeable trend in the model and anisotropy. If the man-
ufacturing process is anisotropic, the variogram depends on both distances and direction. Contrary to some common
beliefs, even for the most refined surfaces, the assumption of isotropy can fail. These features may show evidence of tech-
nological signatures or CMM systematic errors. The paper mentioned above represents a contribution to the adoptions
of graphical tools in the quality control of the variability in spatial data.

Now in this article, the authors aim to prove that Kriging and variogram are adequate tools for quantitative charac-
terization of surfaces. They provide a comparison with methods in the Standard, and theoretically support their findings
in several practical case studies, one of which is presented in detail. Section 2 introduces the protocol recommended by
the Standard for the characterization of the surface topography and the basic of Kriging. The use of Kriging prediction
requires the computation of the weights assigned at measured points and this essential step depends on a suitable cor-
relation model. Section 3 discusses variogram as an informative tool in fitting a model of spatial correlation. Section 4
provides the implementation of the two approaches of Section 2: a case study based on real measurements illustrates the
methods, with a comparison of the respective performances. A final discussion concludes the article.

2 SURFACE TOPOGRAPHY CHARACTERIZATION: STANDARD
PROTOCOL AND KRIGING MODEL

2.1 Standard characterization and protocol

A wide set of different technologies have been developed to enable surface topography measurements.15,16 Among
the most widely used technologies for measuring surfaces, we mention contact probes (e.g., CMM and contact stylus
instruments15), optical probes (point autofocus instruments42,43), and surface topography optical instruments (like focus
variation microscopes or coherence scanning interferometers15). They measure a cloud of points, resulting in a set of
surface heights as a function z(x, y) of plane coordinates (x, y). The heights represent the departures of the measured
topography from an arbitrary reference horizontal plane, usually the cartesian plane z= 0 representing the mean height.

Measurement techniques and characterization methods have been standardized in the ISO 25178.44 Several areal
height parameters and spatial parameters for describing, respectively, the statistical distribution of the surface height
and the spatial orientation of the texture are on hand of the users. In the following, we provide a summary of the main,
and most widely adopted, parameters and tools used to characterize surfaces according to the Standard ISO 25178-2:2012
protocol.45

Among the most widely adopted height parameters, we mention the arithmetic mean height Sa and the root mean
square height Sq, respectively,

Sa = 1
meas(A)∫ ∫A

|z(x, y)| dx dy,

and

Sq =

√
1

meas(A)∫ ∫A
z2(x, y) dx dy,

where the definition domain A is the domain where the measured points are sampled and meas(A) = ∫∫Adx dy.
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It should be noted that the terms used in the ISO Standard sometimes differ from those used in Statistics. If z(x, y) is
the deviation from a reference value, and the normalized integral is intended as the expectation with respect to the uni-
form probability on A, then Sa is the absolute deviation,46 and as such, it is a measure of the dispersion of the heights. This
parameter is the metric used to quantify the roughness of the texture, which is relevant for tribological application, cou-
pling tolerances and esthetic purposes.47,48 The parameter Sq is a standard deviation and is more informative than Sa both
in terms of statistical meanings and physical relationship; in fact, it is linked to surface energy and optical properties.49,50

Since these two statistical moments cannot fully described topographies, the knowledge of the surface height range is
further required for sufficiently characterizing the amplitude of the height variability. To this aim, the maximum height
of the surface height Sz is the most used parameter, to be used with caution since a drawback may be its sensitiveness to
isolated and not significant peaks and pits.

Occasionally, the textures can exhibit imprints as anisotropy and/or periodicity, either due to a product functionaliza-
tion or to manufacturing signatures. Detection and quantification of these defects are core for components functionality
assessment and for process quality control. According to the Standard, the spatial parameters are the best suited for this
analysis. They include the autocorrelation function f ACF, the autocorrelation length Sal, the texture aspect ratio Str, and the
surface texture direction Std.

According to the ISO 25178-2:2012 the definition of f ACF is

fACF(𝜏x, 𝜏y) =
∫∫Az(x, y)z(x − 𝜏x, y − 𝜏y) dx dy

∫∫Az2(x, y) dx dy
, (1)

for all 𝜏x and 𝜏y such that (x − 𝜏x, y − 𝜏y) ∈ A for some (x, y)∈A. Notice that, for each given (𝜏x, 𝜏y), the integration domain
in the numerator is restricted to compatible (x, y).

The other two parameters are defined by

Sal = min{
√

𝜏2
x + 𝜏2

y } ∶ fACF(𝜏x, 𝜏y) ≤ s},

and

Str =
pmin

pmax
,

where pmin = Sal and pmax = max{
√

𝜏2
x + 𝜏2

y ∶ fACF(𝜏x, 𝜏y) ≤ s}.
The autocorrelation function is bounded between −1 and +1 and assumes the maximum value +1 at 𝜏x, 𝜏y = 0.
The autocorrelation length Sal is the horizontal distance of f ACF which has the fastest decay to a specified value s,

with s∈ [0, 1). The shape of f ACF and the distance of decay below a threshold s can support the identification of periodic
structures and of anisotropy. Opposite, if the spatial correlation is not a feature of the topography, it will decrease toward
zero for increasing distances from the considered point. Moreover, the analysis of the autocorrelation decay in different
directions can also identify the anisotropic pattern. Thus, Sal and Str, whose definition exploits the f ACF, are designed
to characterize the isotropy of the surface synthetically: the former measures the extent of the surface (auto)correlation,
being the distance at which a portion of the surface is significantly different from the original location, and the latter
quantifies the severity of the anisotropy. In fact, if the two correlation distances pmin and pmax are sufficiently similar,
the surface can be considered isotropic, being Str the ratio between the smallest and largest distance of decay to s. Pro-
vided that Str ∈ [0, 1], the surface is considered isotropic, if Str > s. The threshold s is conventionally51 set to 0.2 based
on experts opinions on empirical practices without any formal rational; clearly, the value of Sal and Str depends on the
choice of s.

In the case of anisotropy, the direction of the anisotropy, that is, the main pattern, is orthogonal to the direction of Sal
and is quantified, as an angle, by the surface texture direction, Std, assessed from the Fourier spectrum of the surface, in
polar coordinates, as the angle at which the spectrum has the maximum amplitude.

To this extent, the Fourier transform of z(x, y) allows computing the spectrum of the surface heights, that is, the
frequency-dependent amplitudes of z(x, y), whose most typical representation makes use of the power spectrum density
(PSD). The analysis of amplitude peaks of the spectrum enables the identification of the main harmonics, identifying the
main frequency of the periodic pattern. Real surfaces typically show one of the main peaks at very low wavelengths: the
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amplitude of this peak is related to the random variation of z(x, y), according to signal theory.3,52 In general, adequate
preprocessing is necessary to filter the wavelengths that are not relevant to the objectives of the characterization.

The ISO Standard characterization of a surface according to the mentioned parameters has been conceived to provide
a quick, synthetic although conventional characterization. This approach has inherent limitations, mostly linked to the
statistical robustness and the significance in the detection and the characterization of an existent anisotropy.

2.2 Kriging

The concept of using Kriging methods in the research works mentioned in Section 1 to characterize surface topographies
was prompted by their ability to make accurate predictions of a response basing on a limited set of spatial data and the
reasonable assumptions that response values spatially close are much more alike than more distant values. This applies to
Kriging methods as they consist in a spatial interpolation based on the correlation structure between the observations. In
the following, Kriging methods are introduced in the essential parts, to outline their use in the comparison in Section 4.
They rely on an optimality criterion that aims at minimizing the mean squared prediction error (MSPE) of the linear
combination of observations, under the constraints of unbiasedness.

The ordinary Kriging model assumes that the observed values are realization of a Gaussian random field Z(x) plus an
unknown constant term 𝛽:

Y (x) = 𝛽 + Z(x),

where Z(x) denotes the value of the spatial field in the point x = (x1, … , xn)T of the design space 𝜒q ⊂ Rq. In the case
study in Section 4, Z(x) is the height function introduced in the Section 2.1 (q = 2, x = (x, y)) and its realizations are the
measures obtained by measuring the surface points with respect to an horizontal reference plane at height 𝛽 (usually
𝛽 = 0). Moreover, the Gaussian random field is assumed to have zero mean and stationary covariance over the design
space 𝜒q, that is, E(Z(x)) = 0 and Cov(Z(xi),Z(xj)) = 𝜎2

ZR(h;𝜽), i, j= 1, … , n, where 𝜎2
Z is the process variance and R is

the spatial correlation function depending only on the displacement vector h between any pair of points in 𝜒q and on a
vector parameter 𝜽. If the value of the autocovariance function C(h) depends only on the length ||h|| of the vector h, then
the stochastic process is isotropic; opposite, the process is anisotropic. This property is vital in the characterization of the
surface topography we deal with in Section 4.

Let now Yn = (Y (x1), … ,Y (xn))T the vector of the observed values of the spatial field in the n sampled points xi,
i= 1, … , n, and Y0 = Y (x0) the value in a new unsampled point x0. The most popular prediction criterion is based on the
minimization of the mean squared prediction error (MSPE), where the MSPE of Ŷ0 = Ŷ0(Yn) is:

MSPE(Ŷ0,F) = EF[(Ŷ0 − Y0)2], (2)

where F is the joint distribution of (Y0,Yn). The predictor in Equation (2) is unique, linear unbiased and the best one
(BLUP) of Y (x0). If the joint distribution F of (Y0,Yn) is multivariate normal as in the ordinary Kriging, the MSPE in
Equation (2) is equal to the conditional expectation of Y (x0) given Yn:

Ŷ0 = 𝛽 + rT
0 R−1(Yn − 𝛽1) (3)

with 1 =
[
1, 1, … , 1

]T ; R is the correlation matrix with rij = R(xi − xj) (i,j range from 1 to n), and r0 =
[R(x0 − x1), ...,R(x0 − xn)]T is the correlation vector. The predictor in Equation (3) minimizes the MSPE in Equation (2).
Considering the interpolatory property of Kriging, MSPE is zero at the sampled points and it perfectly reflects the Kriging
principle: it is large when x0 is away from the sampled points, small when it is close to them. Such a behavior expresses
a measure of uncertainty of predictions, making possible to provide confidence intervals of the predictions.

It follows that:

MSPE(Ŷ0) = 𝜎2
Z(1 − rT

o R−1ro + cT
o (1TR−11)−1cT

0 ) (4)

with cT
o = 1 − 1TR−1r0. The expression Equation (4) takes into account that 𝛽 parameter is replaced by its generalized least

squares estimator 𝛽. Moreover, the unknown parameter vector 𝜽 in R(h;𝜽) can be estimated by maximum likelihood. It
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has to be highlighted that Equation (4) underestimates prediction variance as it does not account for the extra variability
transmitted to r0, R, and 𝛽 by 𝜽.

Concerning the correlation modeling in predicting the values of Y in unsampled points and in evaluating the MSPE
in the predicted points, there are two approaches: the first one uses a spatial correlation function chosen within some
parametric function families, driving this choice by some underlying phenomenon to model, choosing the parameter(s)
in order to fit best the model;53 the second approach, proposed by Matheron54 exploits the variogram, defined as:

𝛾(xi, xj) =
1
2
E
(
(Z(xi) − Z(xj))2).

Variogram may also be expressed in terms of the model covariance:36

𝛾(xi, xj) = Cov(Z(xi),Z(xi)) + Cov(Z(xj),Z(xj)) − 2 Cov(Z(xi),Z(xj)).

Kriging method was originally intended as a model, to be used in Geostatistics, of the physical randomness of the quantity
of interest. Later a different interpretation of the same method has been devised to treat Computer Experiments, where
the traditional notion of randomness is not applicable.55 In such a case, for each given covariance, the method produces
an interpolation of the given values even if the covariance lack of any physical interpretation. The Kriging approach,
within this framework, can thus be seen as a method to augment the density of sparse, that is, not densely sampled,
measurement. The resulting surface can then be characterized according to the standard method.

The elicitation of a given covariance, together with the corresponding Gaussian distribution, corresponds then to the
choice of a Bayes prior. Such a choice is made according to the qualitative type of the surface of interest. In this article, we
follow this approach, with the addition of a special method for the choice of a covariance based on the use of variograms.
The following Section 3 will be devoted to present and discuss in details the properties of the variogram.

3 VARIOGRAMS

In this section, we present some facts about variograms and their estimation. We aim to illustrate how variograms can
be used both to evaluate characteristics of the measured surface and to suggest a convenient covariance to be used for
Kriging interpolation. The presentation is original in that it considers a definition that applies to both systematic and
random sampling of the locations to be tested.

3.1 Matheron’s variogram

Let Z = (Z(x))x∈A be a real random field, where the set of locations A is endowed with a quasi-distance d. A quasi-distance
is a symmetric relation that satisfies the triangle inequality. If, moreover, d(x, y) = 0 implies x = y, then d is a distance. In
most applications we consider, A is either a planar connected graph, for example, a grid, or a plane real domain. In the
first case, a distance could be a length on the graph. In the second case, the most common distance is d(x, y) = ||x − y||
for some norm on 2-vectors.

Recall that the random field (Z(x))x∈A is intrinsically stationary if 1
2
E((Z(x) − Z(y))2) depends only on the difference

h = x − y through a variogram function 𝛾 , namely, E((Z(x) − Z(y))2)∕2 = 𝛾(||h||). If, moreover, the variogram function
depends on ||h|| only, it is said to be isotropic (for that norm). See, for example, §2.2.1 of Cressie’s monograph.35 The
previous definitions are inspired by the theory of stationary processes, where the stationarity is the invariance with respect
to action of the translation group or of some other transformation group.

If both stationarity and isotropic intrinsic stationarity holds, with 𝜎2 = Var(Z(x)), it is

𝛾(||h||) = 1
2
E((Z(x) − Z(x + h))2) = 𝜎2 − C(h),

hence, the autocorrelation function C(h) is a function of the norm. This variogram methodology is extensively used in
Geostatistics and in Kriging modelization, see, for example, the monograph by Cressie.35 In the original applications
as discussed by Krige, and in many current applications, the variogram is assumed to be monotonic and bounded to
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express the idea of a correlation fading out when the distance increases. We do not make this assumption here. For a deep
mathematical discussion of variograms from the point of view of harmonic analysis see Sasvari56 and Gneiting et al.,57

while an exposition of the relevant mathematics of the Gaussian case can be found in Pistone and Vicario.36

Now, we consider a variation of the standard setting, in that we assume, more generally, that the variogram depends
on a quasi-distance d,

1
2
E((Z(x) − Z(y)2)) = 𝛾(d(x, y)).

This assumption accommodates the instances where the points of A are identified by a nonnumeric label. In this case,
we say that the process is d-isotropic.

The empirical estimator of the variogram studied by Matheron54 is based on a sampling plan As, a finite subset of
A. This estimator uses the values on As of a realization 𝜔 of the random mechanism to compute an estimate of 𝛾 at all
possible nonzero values 𝜃 of the pseudo-distance on As, namely,

𝛾̃(𝜔; 𝜃) = 1
2

1
#{x, y ∈ As | d(x, y) = 𝜃}

∑
{x,y∈As | d(x,y)=𝜃}

|Z(x)(𝜔) − Z(y)(𝜔)|2. (5)

The Matheron estimator can be extended to all possible values of the distance by any interpolation or fitting method.
Clearly, as a random variable depending on the random sample 𝜔, this estimator is unbiased and consistent under

independent copies of the random field and a given fixed sampling plan. If the design is itself random, then unbiasedness
and consistency will depend on proper assumptions on the device generating the sampling plan.

Another point of view is possible, that is, to consider the sample𝜔 as fixed and the sampling plan random. This point of
view is actually more adapted to the present setup. In fact, the measurement error is small if compared with the variability
of the surface itself.

Let us discuss more in detail the argument above in order to derive an interesting generalization of the estimator of
Equation (5). Given the sampling plan As, consider the set of all nondiagonal couples Ãs × As = {(x, y) ∈ As × As | x ≠ y)}.
If the number of sampled points is #As =n, then the number of nondiagonal couples is n(n− 1).

For each fixed realization 𝜔 we have a couple of functions, both defined on Ãs × As; namely we have the n(n− 1)× 2
table

Ãs × As Γ Δ
(x, y) 1

2
(Z(x)(𝜔) − Z(y)(𝜔))2 d(x, y)

and we look for a model to interpolate the column Γ as a function of the column Δ. The scatter plot of the table is called
variogram cloud and any regression method could be used to produce an estimate of 𝛾 .35,41 The plot of the variogram cloud
in a proper scale will provide us with a neat summary statistics of the data, see Figures 7 and 8.

The Matheron’s solution is the computation of mean value for each distance value, that is, it is a conditional
expectation. Namely, if we consider the uniform probability function on Ãs × As, s(x, y) = 1∕n(n − 1), then

𝛾̃(𝜔; 𝜃) = 1
2
Es(|Z(x)(𝜔) − Z(y)(𝜔)|2|d(x, y) = 𝜃).

The conditional expectation above defined for each realization of the original random field model depends on the
sampling plan only.

The idea to consider generic sampling measure originally arose in the discussion of the application of the Kriging
methodology to random fields of the form (F(x) + Z(x))x∈D, where (Z(x))x∈D is intrinsically stationary and F is a deter-
ministic function.41 If the deterministic part F is prevalent to the random part Z, then the Matheron variogram tells more
about the features of F then about the correlation structure of Z. The effects of the deterministic trend and the correla-
tion are confounded in the variogram and could be difficult to evaluate which one prevails, by inspection. Nonetheless,
the tool is useful in two ways. If the deterministic effect is assumed to be prevalent, a proper model, suggested by the
shape of the variogram, can be introduced in the Kriging model via a term 𝛽(x) in order to compute residuals represent-
ing the Z(x) term. Or, in the other case, the variogram can be used to evaluate the correlation in a Kriging model with
constant 𝛽.
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In the following section, we discuss the first case, and we show how to define the variogram of a deterministic function
F. This plan requires a generalization of the Matheron estimator in a way that ignores (provisionally) the effect by the
random field and focusses on the randomness that comes from the sampling design.

3.2 Empirical variogram or G-variogram

This section is a review of the properties of the variogram redefined as follows.

Definition 1. Let A be a domain endowed with a semidistance d and 𝜈 a symmetric probability measure on A×A. Given
a bounded response function of interest F ∶ A → R and (X ,Y ) ∼ 𝜈, the empirical variogram, or G-variogram, of F with
respect to 𝜈 is a regular version 𝛾F of the conditional expectation of 1

2
(F(X) − F(Y ))2 given d(X , Y ), that is,

E𝜈

(
1
2
(F(X) − F(Y ))2|d(X ,Y )

)
= 𝛾F(d(X ,Y )).

In the definition above, the joint distribution 𝜈 is intended to give a theoretical model of the sampling plan. The
simplest case is independent sampling as it is the case in Matheron estimator.

Expansion of the square gives

𝛾F(d(X ,Y )) = 1
2
E𝜈(F(X)|d(X ,Y )) + 1

2
E𝜈(F(Y )|d(X ,Y )) − E𝜈(F(X)F(Y )|d(X ,Y )),

where the two first terms in the right-hand side are equal because 𝜈 is symmetric. Notice that the last term, without the
minus sign, is similar to the autocorrelation function (1) when the sampling measure is uniform on the set {(x, x + 𝝉)}.

The G-variogram function is defined only on the support of the semidistance d under the distribution 𝜈. By polariza-
tion, a bilinear nonnegative definite joint G-variogram 𝛾G,F can be defined. Instead, the definiteness of the G-variogram
function could be considered only in particular cases, precisely when the set of possible distances is a semigroup.

We conclude this discussion by observing that the use of a quasi-distance appears in applications where the directional
G-variogram is the index of interest.41 For example, d((x1, y2), (x2, y2))= |x1 − x2| allows to bring to light variations in one
direction, here the first coordinate direction. This case is of high practical interest as when anisotropy occurs. Both the
toy examples and the case study below present an instance of such a feature.

3.3 General properties of the variogram

Here is a list of simple general properties of the G-variogram that show how the features of F affect 𝛾F .

1. The effect of an affine transformation is, see p. 72 of Cressie,35

𝛾𝛼F+𝛽 = 𝛼2𝛾F .

2. If the sampling joint distribution is symmetric, (X , Y )∼ (Y , X), we have

𝛾(d(X ,Y )) = 1
2
E(F(X)2|d(X ,Y )) + 1

2
E(F(Y )2|d(X ,Y )) − E(F(X)F(Y )|d(X ,Y ))

= E(F(X)2|d(X ,Y )) − E(F(X)F(Y )|d(X ,Y )).

Notice the similarity with the stationary random field case. In particular, assuming independence,

E(𝛾(d(X ,Y ))) = E((F(X) − F(Y ))2) = Var(F(X)).

3. The maximal variation of F at comparable distances is an important feature of the response function. Precisely, if F is
d-Lipschitz, that is,

|F(x) − F(y)| ≤ ||F||Lip d(x, y)
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and ||F||Lip = minx≠y|F(x) − F(y)|∕d(x, y), then

𝛾(d(X ,Y )) = 1
2
E(|F(X) − F(Y )|2|d(X ,Y ))

≤ 1
2
E
(||F||2Lipd(x, y)2|d(X ,Y )

)
=

||F||2Lip

2
d(x, y)2,

that is, the graph of 𝛾 as a function of the distance t = d(x, y) is bounded by a parabola, 𝛾(t) ≤ 1
2
||F||2Lipt2.

4. In general, the interaction variogram can be defined by

E((F1(X1) − F1(X2))(F2(X1) − F2(X2))|d(X1,X2)) = 𝛾1,2(d(X1,X2)),

so that, with obvious notations,

𝛾1+2(t) = 𝛾1(t) + 𝛾2(t) + 𝛾1,2(t).

In order to appreciate the potential interest of the methodology, we discuss some toy examples below. Note that we
will plot the variograms in the scale

√
2𝛾 . In fact, the Lipschitz inequality computation above suggests plotting in a scale

which is linear in the distance.

3.4 1d examples

Let us consider the simple case, where, with no restriction of generality, the metric space is the unit interval, A=]0, 1[,
endowed with the standard distance d(x, y)= |x − y|. Assume the sampling random variables X and Y are IID with uniform
common distribution on A.

The distribution of the conditioning random variable d(X , Y )= |X −Y | has a triangular density t(𝜌) = 2(1 − 𝜌) if 0 <

𝜌 < 1, and t(𝜌) = 0 otherwise.
The variogram 𝛾 is characterized by the master equation

∫
1

0 ∫
1

0

1
2
|F(x) − F(y)|2Φ(|x − y|) dxdy

= ∫
1

0 ∫
1

0
𝛾(|x − y|)Φ(|x − y|) dx dy = ∫

1

0
𝛾(𝜌)Φ(𝜌) t(𝜌)d𝜌,

where the last integral is the result of the change of variable 𝜌 = |x − y| and Φ is any measurable function such that the
integral exists. Because of the symmetry, the first integral is

∫0<x<y<1
|F(x) − F(y)|2Φ(y − x) dxdy

= ∫
1

0

(
1

2(1 − 𝜌) ∫
1−u

0
|F(v) − F(𝜌 + v)|2 dv

)
Φ(𝜌) t(𝜌) d𝜌,

where u= x − y and v= x.
In conclusion, the variogram is

𝛾(𝜌) = 1
2(1 − 𝜌) ∫

1−𝜌

0
|F(v) − F(𝜌 + v)|2 dv. (6)

Let us consider a few typical cases, illustrated in Figures 1 and 2. All the graphs in this section are done with the
Wolfram Mathematica suite.
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F I G U R E 1 Examples of G-variograms 𝛾F . The four cases show how the shape of F is reflected in the shape of 𝛾F . The cases of F are, left
to right, top to bottom: Affine function F(x) = 1 + 1

4
x; parabolic bump F(x)= x(1− x); parabolic bend F(x)= 1− x2; sine function

F(x) = sin(6(2𝜋)x)

F I G U R E 2 Examples G-variogram showing the effect of the superpositions of a linear and a sinusoidal shape: F(x) = 1
4

x + sin(6(2𝜋)x)
(left) and F(x) = 4x + sin(6(2𝜋)x) (right)

Affine F
If F is affine, F(x)= ax + b, then

𝛾(𝜌) = 1
2(1 − 𝜌) ∫

1−𝜌

0
a2𝜌2 dv = 1

2
a2𝜌2.

This example clearly supports the choice to plot
√

2𝛾 instead of 𝛾 itself.

A bound on F
If |F|≤ k, then 1

2
|F(x) − F(y)|2 ≤ 2k2. If F is Lipschitz, |F(x)−F(y) |≤ a|x − y|, then 𝛾(𝜌) ≤ 1

2
a2𝜌2, see Item (3) in the list of

properties above. If moreover F(0)= 0, then F ≤ |a|, and the bound is min(a2𝜌2, a2) = a2𝜌2.
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Bended F
Consider F(x)= 4hx(1− x) or F(x)= 1− x2. In such cases, the computation and the qualitative analysis are both simple.
See Figure 1

Periodic F
Let us consider a periodic function, F(x) = sin(k(2𝜋))x). In this case,

(F(v) − F(u + v))2 =
(

sin
(2𝜋

k
v
)
− sin

(2𝜋
k

(u + v)
))2

(
sin

(2𝜋
k

v
)
− sin

(2𝜋
k

u
)

cos
(2𝜋

k
v
)
+ sin

(2𝜋
k

v
)

cos
(2𝜋

k
u
))2

.

Superposition
Let us consider the case of superposed functions. The variogram of F1 +F2 appears to be difficult to understand in terms
of the separate variograms because there is an interaction term:

𝛾1+2 = 𝛾1 + 𝛾2 + 𝛾1,2,

where 𝛾1,2 is defined by the polarized version of the definition of 𝛾 . Figure 2 provides two examples of superposed affine
and periodic shapes with different relative weights.

3.5 Discussion of the examples

Let us review the purpose of the exercises above. The idea is to motivate the use of variograms with sampled points in the
characterization of surfaces. Consider a response surface on a given real domain A (usually a rectangle). A measurement
is available at each testing points x ∈ A. We want to assess the conformity of the shape of the response surface to some
standard. For example: “is the surface bended in some direction?” Or: “Is there a waviness of a type associate to a specific
technology?” These are possible defects that cannot be specified in a parametric way.39

A very popular modeling method relies on the assumption that the surface under study is the realization of a random
field, for example, a Gaussian random field (Z(x))x∈A. In such a case, the observed characteristics of the surface will, in
fact, depend on the autocovariance of the random field.

Even if the surface under examination is not random in any physical sense, the examples show that one can use the
G-variogram to assess some specific features, such as the waviness.

Moreover, one can perform the prediction of the response at untried points by a Bayesian Kriging interpolation based
on the elicitation of a covariance. In this case, the form of the variogram will suggest the choice of a reasonable and
compatible covariance.35 That is, knowledge about the variogram provides knowledge about the correlation and, in turn,
a least square prediction of the response at untried points.27,36,54 We stress that this methodology is not a method of
estimation of a correlation, but it is a method of elicitation of a Gaussian prior, as it is illustrated in the following section.
In fact, the empirical variogram is not a bona fide variogram, that is, it does not necessarily satisfy the negative-definite
condition. For this reason, the associated autocovariance could be negative definite. See, for example, the discussion in
Gneiting et al.57 and Stehlik et al.58 Concerning the latter paper, the authors proved that the probability of choosing a
negative-definite covariance when dealing with empirical financial data is high. The same issue might happen when
a sequential design is used in the measurement process, mainly when ad hoc software are blindly used to overcome
computational features. Therefore, possible topics to be investigated are the next-point selection criteria that may look for
geometric variograms corresponding to positive-definite covariance structure.

4 CASE STUDY

This section presents a case study to show the effectiveness and the potential of the methodologies formerly discussed.
A real surface has been densely measured by an areal surface topography measuring instrument, achieving a very large
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F I G U R E 3 (A) Schematic of FDM process and (B) manufactured specimen. The top left surface, indicated by the arrow, has been
characterized

set of data (106 measured points) and the characterization of surface topography has been carried out according to the
Standard protocol, as presented in Section 2.1. Then, considering only a very small subset (0.4%) of the measured data, a
larger number of the surface points has been predicted using Kriging and variogram. The set of the predicted points was
used for characterizing the surface according to the standard protocol. The comparison between the parameters obtained
according the two ways of approaching the problem is in favor of Kriging and suggests final considerations.

The standard characterization method is applied through the commercial software Mountains Map 7.4.

4.1 Materials and methods

Modern industry, within the paradigm of Industry 4.0, experiences a constant increase in the demand for flexibility and
customization of products.18 This has led to the development of innovative manufacturing strategies in the production
processes to satisfy customer requirements. Additive manufacturing (AM) outstands other solutions for its capability to
optimize the design of components and the material and energy consumption.59 Due to its flexibility in a wide range of
application, we focus on the fused deposition modeling (FDM), that is, an additive process for polymeric material. The
component is manufactured by fusing a wire of material, deposited layer-by-layer raster scanning the layer cross-section
of the part. Figure 3(A) represents a schematic view of the process; Figure 3(B) shows the manufactured specimen with
a benchmark geometry.

The top surface topography of the specimen (indicated by a red arrow) has been measured exploiting an area surface
topography measuring instrument (Figure 4): coherence scanning interferometer (CSI), a Zygo NewView 9000 equipped
with a 20× objective and a 0.5× digital zoom. This instrument provides a high measurement density, with the maximum
measurement speed, and is a state of the art instrument for the inspection of topographies. Thanks to the measurements
acquisition capability of the CSI instrument, a dense sampling of the surface, with a lateral resolution of 3.56 μm, was
made possible, resulting in one million measured points.

4.2 Results

4.2.1 CSI measurements

The surface topography based on the measured points is shown in Figure 5, where the manufacturing signature is clearly
noticeable as a waviness pattern along the x-axis; also a deviation from planarity can be highlighted, even though at a
minor extent. The measured topography is consistent with the known manufacturing signature of the FDM process, due
to the raster scanning approach according to which the layers are built; in fact, the signature unfolds in a periodic pattern
resembling the adjacent deposition of the molten wires of material. Given the high density of the measured points, the
representation of the surface topography in Figure 5 may be considered faithful to the real one. Therefore, the comparison
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F I G U R E 4 The CSI Zygo NewView 9000

F I G U R E 5 3D plot of the surface topography z(x,y)
measured by the CSI. It may be considered a faithful
representation of the real surface topography

we perform considers that surface as the real one and the CSI measurements as the reference to qualify the effectiveness
of the Kriging method in predicting surface topographies.

To this aim, the main parameters (according to Standard, see Section 2) for the characterization of the surface tex-
ture are computed, using the large data set of CSI measurements and by means of the commercial software Mountains
Map v7.4. As the object of the characterization is the surface texture, the waviness surface, that is, the S-F surface,45 is
considered1. The resulting surface texture parameters are in Table 1 and the corresponding PSD is represented in Figure 6.
The first three parameters, Sa, Sq, and Sz, characterize the surface heights, highlighting hills and valleys with respect to

1The operators sequence involve an S-operator (i.e., a high-pass filter) with cut-off of 80 μm, and an F-operator for leveling.
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Parameter Sa (𝛍m) Sq (𝛍m) Sz (𝛍m) Sal (mm) Str Std

Value 36.1 45.5 326 0.149 9.5% 178.0◦

T A B L E 1 Surface texture parameters
according to ISO 25178-2:2010, computed on
CSI measurement data and by means of the
dedicated software MountainsMap

F I G U R E 6 Power spectrum density of the surface topography according to CSI measurements

the reference cartesian coordinate plane, set at the average height, z= 0. The other three parameters, Sal, Str, and Std, are
for the detection of possible anisotropies. The anisotropy of the surface is highlighted according to the standard analysis
through the isotropy parameter Str, that relies on the evaluation of Sal. Str is 9.5%, definitely less than the conventional
threshold of 20%, and the texture pattern direction, which describes the direction of the anisotropy measured by the
parameter Std, is at 178◦ (or equivalently at −2◦) with respect to the x-axis. As regards the analysis of the PSD graph, com-
puted as the average of the PSD evaluated in all possible directions, it can be noticed the main harmonic, that is, the base
wavelength, at 0.39 mm. The recognized wavelength is coherent with the surface topography in Figure 5, pointing out the
manufacturing signature and its entity. There is a second relevant harmonic in close proximity of zero (at 0.027 mm): this
feature represents the noise content of the surface, due to measurement noise and local random variability of the surface.

4.2.2 Variogram and Kriging prediction

Since we aim at proving the adequateness of Kriging methodology in increasing the measurement informativeness of slow
and low-resolution surface measurement instruments (as CMMs and contact styluses), a sample from the dense surface
set of points measured using the CSI was randomly extracted to be used as input of the Kriging prediction model. The
sample size was 4000 points, only the 0.4% of the 106 measured points; this size is meant both to be representative of the
low-resolution measurement system, simulating a sparse measurement, and to make the comparison more persuasive.
In fact, this scenario may also happen in situations in which, after a process optimization requiring thorough expensive
characterization (e.g., based on optical surface topography instruments) and yield reference information about the sur-
face, subsequent cheaper online quality controls may be performed using less expensive but slower instruments. The
choice of the random sampling is aimed at enabling inferences on the statistical distribution and properties of the results.

As the first step, the empirical variogram (as suggested in Section 3.1) was computed. In Figure 7, the variogram cloud
and the (omni-directional) variogram, based on the Euclidean distance and according to the Matheron’s estimator, are
represented.

The variogram exhibits a structured correlation; the behavior due to the sampled points significantly and systemat-
ically differs from that of a set of points measured on a planar surface, without any systematic behavior. In particular,
two deviations from planarity can be appreciated: a periodic pattern superimposed to a polynomial trend (second-order
seems suited). Such behavior suggests the presence of a sinusoidal texture and of a systematic deviation from planarity
that can be generally described by a polynomial of at least first order (recall that a quadratic variogram characterizes a
linear relationship between responses). The variograms along the x- and y-axis have been evaluated, to investigate the pos-
sible presence of anisotropy. These directions have been chosen knowing the technological characteristics of the process,
which introduces periodicities and structured correlations only in orthogonal directions. A pronounced waviness, see
Figure 8(A), is highlighted by the variogram along the x-axis, whereas the variogram along the y-axis in Figure 8(B) does
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F I G U R E 7 Omni-directional
variogram cloud and estimated
variogram (in red), that suggests the
presence of a structured correlation. Its
directionality is investigated in Figure 8

F I G U R E 8 Variogram clouds along the (A) x-axis and (B) y-axis. In red the correspondent empirical variograms

not reveal a departure from the planarity of the surface and there is no evidence of any correlation structure. Therefore,
the two one-directional variograms detect severe anisotropy.

Relying on these findings, the height of the surface was predicted at 62,500 points (representing the 6.25% of the
measured points data set). It should be noted that computational constraints limited the size of the Kriging prediction
set; but it is not so small if compared with the starting data set (4000 points), resulting in about 6.4% the percentage of
predictor points to predicted ones.

Kriging predictions have been computed exploiting the DACE toolbox of MatLab 2019b, and relying on a supervised
procedure to choose the functional form of the spatial correlation function. Provided the knowledge of the variogram, a
cubic spline function has been selected, because, among the available ones in the toolbox, it is the aptest to model a wavy
trend. The spatial correlation along the y-axis was a constant and the overall correlation results from the product of the
two.38 The toolbox, to achieve the Kriging prediction, recomputed the spatial correlation based on the sampled points;
the model caters for anisotropy by differently choosing the spatial correlation function parameters for the two spatial
directions.

The surface topography, obtained with Kriging predictions of the heights, is represented in Figure 9. The manufactur-
ing signature due to waviness can still be appreciated along the x-axis direction, despite the poor sampling density. The
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F I G U R E 9 3D plot of the surface topography z(x,y) obtained
through the application of Kriging. This results has to be compared
with Figure 5

Parameter Sa (𝛍m) Sq (𝛍m) Sz (𝛍m) Sal (mm) Str Std

Value 35.6 44.8 325.5 0.152 10.3% 180.0◦

T A B L E 2 Surface texture parameters, of
the Kriging-interpolated surface, computed
according to ISO 25178-2:2010 by means of
the dedicated software MountainsMap

F I G U R E 10 Power spectrum density of the Kriging-interpolated surface

predicted surface has been characterized, considering its points as measured ones, to provide a quantitative comparison:
the surface texture parameters (summarized in Table 2) and the PDS (shown in Figure 10), according to the Standard,
have been computed.

Comparing the results in Table 1, based on 106 measured point with the CSI, with the results in Table 2, computed
on the predictions based on 0.4% of the mentioned measured points, it can be stated that the surface is still correctly
characterized as anisotropic with the parameter Str significantly smaller than 20% and the texture pattern is directed at
178.7◦ (i.e., −1.3◦) with respect to the x-axis. The main harmonic representing the base wavelength is evaluated correctly
at 0.39 mm. Due to the interpolation inherent in the Kriging, very low scale variation can be only partially captured. In
fact, the PSD of the interpolated surface shows a peak at 0.1 mm (see Figure 10). This harmonic is near the upper bound
of the noise frequency of the CSI measured surface (0.027 mm) and shows that the procedure based on the Kriging acted
as a high-pass filter.

A possible way to investigate the nature of the slight differences between the surface topography parameters in Tables 1
and 2 can be sought in the analysis of the interpolation error, shown in Figure 11. Not particular trends can be highlighted,
and larger errors are at the edges of the investigated domain, which is typical for interpolation methods.55,60 Moreover,
considering the spectral content of this interpolation error, shown in Figure 12, only one harmonic at 0.021 mm can be
noticed, which is not far from the noise content of the original data set, that is, 0.027 mm.
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F I G U R E 11 Surface topography of interpolation error of the
Kriging prediction

F I G U R E 12 Power spectrum density of the interpolation error of the Kriging interpolation

T A B L E 3 The 2.5% quantile and 97.5% quantiles of the surface texture parameters distribution, evaluated
on the Kriging-interpolated surfaces obtained evaluated through the 1000 random independent samples

Parameter Sa (𝛍m) Sq (𝛍m) Sz (𝛍m) Sal (mm) Str (%) Std (◦)

2.5% quantile 35.2 44.4 258.3 0.143 9.5 177.0

97.5% quantile 36.2 45.8 397.4 0.154 11.2 180.0

Note: Computations have been carried out according to ISO 25178-2:2012 by means of the dedicated software MountainsMap.

The procedure has been repeated 1000 times, to provide statistical meaningfulness to the performed comparison. Each
time, a random sample was extracted, the Kriging prediction was repeated and, for each prediction, the parameters char-
acterizing the predicted surface topography were computed. In Table 3, there are the 2.5% and the 97.5% quantiles of the
empirical distribution of the parameters. The reference characterization values of Table 1 are included in the confidence
intervals of Table 3, concluding that the differences between the reference characterization values and the ones based on
Kriging predictions (in Table 2 and formerly discussed) may be considered as not systematic.

5 CONCLUSIONS AND FINAL REMARKS

The issue addressed in this article is the surface topography form measurement and verification. The standards pro-
vide several indices in order to detect possible technological errors and signatures in the parts. In this work, we adopted
the ordinary Kriging model, which proved to be effective in predicting geometrical errors in manufacturing, and the
variograms for modeling a possible correlation between the sampled points of the measured surface, according to
geostatistic practices for very noisy data. The comparison between the Standard measurement approach and the Kriging
methods was based both on theoretical insights about the use of the variogram in case of random sampling and on a case
study based on real measurements where random sampling and Kriging predictions are used. The Kriging methodology
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proved effective in predicting surface textured patterns, even if it was based on a set of sparse economic measurements.
The result of Kriging interpolation, once characterized according to the Standard procedure, yielded information consis-
tent with denser and more expensive measurement approaches. The current challenges of Industry 4.0 for surface texture
characterization, hereby including freeform surfaces and additive surface, require an extremely long time, and hence high
costs, to achieve an adequate and representative measurement by means of traditional devices. The SMEs would have to
purchase extremely expensive new equipment (typically optical instruments) or to invest a consistent amount of time for
quality assessments using the traditional one, to cope with technological challenges enforced by the current industrial
framework. Thus, the adoption of the empirical variogram in detecting correlation structure as well as Kriging predic-
tion can be considered adequate tools to achieve informativeness from sparse and cheap set of measurements statistically.
Moreover, we consider our finding as an encouraging preliminary step to be used as a guide for further developments
in detecting anomalies, obtaining definitive practical advantages for SMEs. Future work shall address the application of
these tools for process control. A typical scenario may be the application of Kriging method for in-line process control
with contact probes based on control limits set on the basis of reference surface topography measurements performed by
optical devices. The software implementing the Kriging prediction can be straightforwardly incorporated into the CMM
computer control, and it can run in real time; being the automation of the Kriging predictions quite inexpensive, it is pos-
sible to predict the surface texture over a tight grid, also providing a quantification of the uncertainty on the basis of the
MSPE.
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