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A B S T R A C T   

Fused Deposition Modeling (FDM) is an additive manufacturing technique for fabricating parts directly from 
computer-aided design data by melting, extruding, and resolidifying a thermoplastic filament. This paper pre-
sents a methodology for optimizing both process efficiency, i.e., time and energy consumption, and part quality, 
i.e., surface roughness and dimensional accuracy, of Polylactic Acid (PLA) components produced by FDM. In this 
work, a Design of Experiments (DoE) approach is adopted to quantify the effects of deposition parameters on 
process efficiency and part quality outputs. Specifically, the investigated input parameters are layer height, fill 
density, extruder temperature, part orientation, number of shells, print speed and retraction speed. The math-
ematical models relating the significant process parameters to the output responses are developed and the re-
sponses are optimized considering different scenarios. An experimental validation is performed to test the 
adequacy of such optimizations. These experimental results showed that, according to the context, different 
parameter settings pursue different goals in terms of part quality and process efficiency. The proposed approach 
may effectively help designers determine process parameters’ settings to optimize both part quality and process 
efficiency and can be applied to either prototype or part production.   

1. Introduction 

Additive Manufacturing (AM) is worldwide recognized as “the pro-
cess of joining materials to make parts from 3D model data, usually layer 
upon layer, as opposed to subtractive manufacturing technologies and 
formative manufacturing methodologies”. Additive technologies have 
experienced significant growth over the past 30 years in terms of the 
number of machines sold and parts produced. By researchers and 
practitioners, AM is considered one of the most dynamic and promising 
recent industrial innovations (Nyaluke, An, Leep, & Parsaei, 1995; 
Wohlers, 2018). AM processes offer a novel approach for prototyping 
and manufacturing parts compared to traditional casting and metal- 
cutting processes. These technologies integrate computer-aided design 
(CAD) for creating a computer model of the final part with its 
manufacturing by adding layers of materials with dedicated equipment. 
Accordingly, it is possible to create spatially sophisticated and light-
weight lattice components that would be impossible to obtain with 
traditional manufacturing techniques (Verna, Genta, Galetto, & Fran-
ceschini, 2020). The rapid growth and improvements in AM technolo-
gies have enabled many industrial sectors to reap the advantages 

(Chergui, Hadj-Hamou, & Vignat, 2018; Lan & Ding, 2007). Typically, 
AM applications are found in the aerospace, energy, automotive, med-
ical and dental, tooling and jewelry industries (Amini & Chang, 2018; 
Galetto, Genta, Maculotti, & Verna, 2020; Gardan, 2016; Majeed et al., 
2020; Verna, Genta, Galetto, & Franceschini, 2019). One of the main 
solid freeform fabrication (SFF) processes recognized as an AM tech-
nology is Fused Deposition Modeling (FDM). This process is one of the 
most widely used, particularly for non-commercial use, due to its 
versatility in producing functional parts with complex geometry in 
reasonable production time (Rayegani & Onwubolu, 2014). In the FDM 
process, a thermoplastic filament is melted and extruded through a 
circular nozzle. The molten plastic is deposited onto a print bed through 
a nozzle movement, controlled through a 3-axis system. Thermoplastics 
are the most widely used feedstock materials, although different mate-
rials, including cement and composites, are also compatible with the 
FDM process (Abid et al., 2018; Li, Wang, Sun, & Yu, 2018; Liu et al., 
2019; Stoof & Pickering, 2018). Due to the versatility of materials and 
shapes, FDM’s main advantage is to produce polymeric complex-shaped 
components in one step. The major applications are functional pro-
totypes for commercial and non-commercial use, rapid tooling patterns, 
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and concept models. Despite FDM benefits, many technical challenges 
continue to hamper widespread adoption and achieve its full potential. 
One major barrier is the variation in the part quality and mechanical 
properties, due to inadequate dimensional tolerance, presence of de-
fects, surface roughness, and residual stress, which is not sufficient yet to 
meet the industrial sectors’ stringent requirements (Dong, Wijaya, Tang, 
& Zhao, 2018; Perez, 2002; Wu, Wei, & Terpenny, 2018). Achieving 
high levels of surface roughness and dimensional accuracy of FDM parts 
is an extremely challenging task due to many factors, such as the high 
complexity of the underlying physical phenomena and transformations 
that take place during part production. Nowadays, there is no unique 
standard method to model and improve the surface quality and 
dimensional accuracy due to the complex nature of the process and the 
different properties of the material used. Indeed, several approaches 
have been adopted in the literature to this purpose, such as Design of 
Experiments (DoE), simulations and optimizations, involving different 
process parameters and their interactions. In particular, several attempts 
have been made to model the surface roughness of FDM parts. Ahn, 
Kweon, Kwon, Song, and Lee (2009) proposed a theoretical model to 
express surface roughness distribution according to changes in surface 
angle by considering the main factors that crucially affect surface 
quality. In the study of Anitha, Arunachalam, and Radhakrishnan 
(2001), parameters’ influence on prototype quality characteristics using 
Taguchi technique was assessed. Pandey, Reddy, and Dhande (2003) 
described a methodology and software implementation that provide the 
designer with a computer graphics-based visualization of surface 
roughness. In the study of Durgun and Ertan (2014), the effect of five 
different raster angles for three orientations was tested on surface 
roughness, tensile strength, and flexural strength (Durgun & Ertan, 
2014). Furthermore, several studies have been published in the litera-
ture on modeling the dimensional accuracy of FDM parts. Sood, Ohdar, 
and Mahapatra (2009) investigated the effect of different process pa-
rameters, such as layer height, part orientation, raster angle, air gap and 
raster width, on the dimensional accuracy of FDM processed ABSP400 
(acrylonitrile-butadine-styrene) parts. Also in the paper of Nancharaiah, 
Raju, and Raju (2010), the effect of layer height, road width, raster angle 
and air gap on the surface finish and dimensional accuracy was inves-
tigated. Sahu, Mahapatra, and Sood (2013) presented experimental data 
and a fuzzy decision-making logic combined with Taguchi method for 
improving the dimensional accuracy of FDM processed ABSP 400 parts. 
Garg, Bhattacharya, and Batish (2016) investigated the effect of part 
deposition orientation on surface finish and dimensional accuracy of 
FDM parts. Previous research has also investigated the effect of several 
process parameters on the FDM process’s efficiency in terms of printing 
time and energy consumption (Frank, Chandra, & Schmitt, 2015; Grif-
fiths, Howarth, Rowbotham, & de-A., & Rees, A. , 2016). It is evident 
from the literature that several input parameters can be controlled and 
varied in order to optimize the selected output parameters, involving 
efficiency and quality of FDM parts (Pandey, Thrimurthulu, & Reddy, 
2004). In this work, a methodology for choosing the input parameters is 
proposed and implemented. When a combination of different input 
variables and their interactions affect selected responses, the Design of 
Experiments (DoE) is an effective statistical approach for optimizing the 
process (Mason, Gunst, & Hess, 2003; Verna, Biagi, et al., 2020). 

This paper aims at investigating FDM processed PLA (Polylactic 
Acid) parts through statistically designed experiments to determine the 
significance of the process parameters affecting parts quality (surface 
roughness and dimensional accuracy) and process efficiency (printing 
time and energy consumption). To date, few detailed studies have pro-
posed a combined analysis of the quality and efficiency of parts pro-
duced by the FDM process. This investigation attempts to provide a 
reference procedure to determine the combination of process parame-
ters that optimize both part quality and process efficiency, with the 
minimum number of tests. To this end, a fractional factorial design is 
performed. The Analysis Of Variance (ANOVA) is used to estimate the 
statistical significance of parameters’ effects on the observed differences 

in the selected responses. The adequacy of the obtained models is 
demonstrated by using the coefficients of determination, and the re-
sidual plots are analyzed to verify the basic assumptions to perform the 
ANOVA. The mathematical models relating the significant process pa-
rameters to the output responses are derived and optimized, considering 
different scenarios. Finally, new samples are produced to test the 
models’ adequacy and the optimizations performed in each scenario. 
The findings should make an important contribution to the field of FDM 
production by supporting designers in the improvement of process ef-
ficiency and parts quality, according to their objectives. 

It is worth remarking that, in the scientific literature, it has been 
shown that some parameters may have a quadratic effect on responses 
(Lužanin, Movrin, & Plančak, 2014; Sanatgar, Campagne, & Nierstrasz, 
2017). To this end, four central points are added to the experiment, 
which allowed evaluating the model’s curvature. However, since the 
effects of each quadratic term of the model cannot be estimated without 
performing further tests, i.e., by adding axial points, these models may 
not be used for forecasting purposes (Myers & Montgomery, 1995). 
Further tests will aim at estimating the quadratic effects, thus improving 
the predictions and optimizations obtained in this paper. Despite this 
limitation, the proposed methodology can represent an effective and 
efficient approach to support researchers and practitioners. 

The remainder of this paper is organized into five sections, including 
one appendix. Section 2 presents the FDM process and the produced PLA 
samples. Section 3 contains the description of the design of experiments 
and the related experimental details. Section 4 contains the performed 
analysis with the related experimental results and discussion. Section 5 
summarizes the results obtained, specifying the practical implications 
and insights for future research. The Appendix section provides further 
information to support the proposed analysis. 

2. FDM process and samples 

2.1. FDM machine 

The AM machine used in this study is the MakerBot z18. It is char-
acterized by a layer resolution of 100 µm and an on-board camera to 
remotely monitor the print progress. Besides, it enables the production 
of both prototypes and finished products due to the high performance, 
including high speed, good reliability and free design, in a build volume 
of 30.0 L × 30.5 W × 45.7H cm. Shortly, in the machine MakerBot z18, 
the filament is fed into the extruder of the printer, where it is heated to a 

Fig. 1. Schematic of the FDM process.  
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temperature high enough to melt it. Then, it is extruded from a nozzle to 
create an object, each layer at a time. The machine is provided with a 
nozzle with a diameter of 0.4 mm. Furthermore, it does not have a 
heated build plate, and thus it operates at room temperature (between 
15 ◦C and 24 ◦C). A schematic representation of the FDM machine is 
provided in Fig. 1. 

2.2. Process parameters 

A considerable amount of literature focused on the effect of FDM 
process parameters on parts quality and process efficiency. These pro-
cess parameters can be grouped into three categories (see also Table 1): 

(i) Process-specific influencing variables: layer height, bed temper-
ature, nozzle temperature, fill density, print speed, infill speed, 
retraction distance, retraction speed, initial layer height, initial 
layer line width, bottom layer speed, raster angle, raster width, 
air gap, number of shells, shell thickness, bottom/top thickness, 
outer shell speed, inner shell speed;  

(ii) Machine-specific influencing variables: nozzle diameter, speed of 
material feeding rollers, filament width, layer height, platform 
adhesion type, temperature of removal, filament diameter;  

(iii) Geometries-specific influencing variables: part orientation, 
particular features. 

The parameters listed above are first reduced by selecting the pa-
rameters that are actually controllable on the MakerBot z18. For 
instance, parameters such as nozzle diameter or bed temperature are not 
considered in the present analysis because they cannot be modified and 
controlled in the adopted AM machine. Secondly, a qualitative matrix of 
relation is created to identify not significant parameters (see Table 1). In 
the column “Literature”, the evaluations are related to the relations 
identified in the literature. A nominal scale from 1 to 5 is adopted. This 
5-point scale is chosen because it enables the evaluator to clearly 
distinguish between the various levels, without generating ambiguity 
and/or item omissions in the evaluation process (Agresti, 2003; Fran-
ceschini et al., 2007, 2019). Specifically:  

• 5 is assigned when three or more papers identified a relation between 
the process parameter and the response;  

• 4 means that two papers showed the existence of a relation among 
the variables;  

• 3 is assigned when one paper proved a relation among the variables;  
• 2 when one paper suggested that no relation exists;  
• 1 when more than one paper showed the non-relation between the 

parameter and the response;  
• NC, i.e., not classifiable, is introduced when no paper investigated 

the relation between the parameter and the response. 

The matrix reported in Table 1 also includes the evaluation of experts 
in the FDM process. Three experts were interviewed since three can be 

considered the minimum acceptable number for obtaining reliable 
evaluations without significantly increasing the cost of acquiring in-
formation (Franceschini, Galetto, & Maisano, 2019). The experts’ eval-
uation, obtained according to the 5-points scale, is reported in the 
column “Expert”. Finally, process parameters having at least one eval-
uation equal to 4 in the relation matrix are chosen as potential control 
factors for the planned experimentation. These parameters are: print 
speed, layer height, fill density, extruder temperature, part orientation, 
number of shells, retraction speed. Although part orientation was sig-
nificant, it is not considered in this study as the aim is to produce parts 
without using supports. To this purpose, new experiments will be 
designed to evaluate part orientation’s effect on selected responses. It 
has to be remarked that the selection of process parameters for the DoE, 
also called pre-experimental planning, requires in-depth process 
knowledge. According to Montgomery (2017), different techniques can 
support designers in this phase, such as cause-and-effect diagrams. 
However, no standard procedure exists. In this paper, rather than relying 
only on prior knowledge, a structured method has been proposed that 
combines literature review and practical experience. 

Finally, the six process parameters considered are described in detail.  

1. Print speed: this parameter specifies the printing speed used during 
the process. It influences the speed of material deposition. Frank 
et al. (2015) included print speed as one of the seven input param-
eters for the experiment and discovered that this factor has a statis-
tical influence on the overall time needed to finish a printed part.  

2. Layer height: layer height represents the thickness of each printed 
layer. It is equivalent to vertical resolution in FDM parts. The thinner 
the layer, the smoother the printed object’s texture, but more time is 
required. This strictly depends upon the type of nozzle used (Anoop K 
Sood, Ohdar, & Mahapatra, 2012). The standard nozzle diameter on 
MakerBot z18 is 0.4 mm, and therefore, this is the highest layer 
height that can be achieved. In literature, several studies have 
investigated the key role of layer height in FDM processes (Anitha 
et al., 2001; Frank et al., 2015; Griffiths et al., 2016; Onwubolu & 
Rayegani, 2014; Pandey et al., 2003; Pennington, Hoekstra, & 
Newcomer, 2005; Sood et al., 2012).  

3. Fill density: the infill percentage gives the support structure inside 
the object and can be varied depending on the part’s application 
field. The density of the part is strictly related to the infill percentage. 
A higher percentage will result in a more robust object, while 0% 
infill will make the object hollow. When a prototype is only used for 
shape and fit testing, the infill percentage can be decreased, allowing 
it to be made at a lower cost and faster. Griffiths et al. (2016) 
included fill density and other three process parameters to investi-
gate the relation among these and output variables.  

4. Extruder temperature: this is the temperature of the nozzle. This 
parameter affects the viscosity of the polymer. In the research of 
Frank et al. (2015), it was shown that the high temperature of the 
nozzle strongly impacts the shrinkage. Kaveh, Badrossamay, For-
oozmehr, and Etefagh (2015) investigated the effect of the extruder 

Table 1 
Qualitative matrix of relation between process parameters and responses, according to literature and experts’ evaluations.  

Category Parameter Printing time [min] Energy consumption [kWh] Surface roughness [µm] Dimensional accuracy [mm] 

Literature Expert Literature Expert Literature Expert Literature Expert 

(i) Print Speed [mm/s] 4 4 4 4 3 3 4 4 
(i) Layer Height [mm] 5 5 4 4 5 5 4 4 
(i) Fill Density [%] 5 4 4 4 2 1 4 3 
(i) Extruder temperature [◦C] NC NC 4 4 2 2 3 3 
(i) Number of shells [–] 4 4 3 3 3 1 3 2 
(i) Bottom/Top thickness [mm] 3 2 2 2 2 1 2 2 
(i) Retraction speed [mm/s] 4 1 2 1 3 NC 3 NC 
(i) Retraction distance [mm] 3 1 2 1 3 NC 3 NC 
(ii) Filament diameter [mm] 1 NC 1 NC 3 2 2 2 
(iii) Part orientation [◦] 1 NC 2 NC 4 4 4 4  
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temperature on precision and internal cavity of geometries produced 
by FDM. The results showed that the temperature affects both the 
output variables (Kaveh et al., 2015).  

5. Number of shells: a shell is a border that is extruded for each layer. 
The minimum number of shells per layer is one (Griffiths et al., 
2016). Adding more shells does not affect its external dimensions but 
can make the part stronger. The number of shells is one of the process 
parameters considered by Griffiths et al. (2016) in their research.  

6. Retraction speed: the retraction speed gives information on how fast 
the filament is retracted. In many cases, this parameter is not 
considered in investigations. However, since two parts are printed 
together in this study, the retraction speed might significantly affect 
part final quality and printing time. 

2.3. PLA samples 

Two FDM processed PLA (polylactic acid) samples are produced, 
following the six steps illustrated in Fig. 2: 3D model creation, STL file, 
File transfer to the machine, Machine setup, Build, Part removal 
(Gibson, Rosen, & Stucker, 2014). 

Two shapes considered “problematic features” in literature are 
designed to analyze how the machine works under stressed conditions. 
The two samples that are produced together in the same job are an 
overhang and a bridge. They can be seen, respectively, as prototypes of a 
connector for a pump and a door hinge (see Fig. 3). 

Regarding the prototype of a connector for a pump, the main features 

are the overhanging surfaces. An overhang occurs when the material on 
the printed layer is partially supported by the underlying layer. At 45◦, 
the newly printed layer is supported by 50% of the previous layer, 
allowing sufficient support and adhesion to build on it. Above 45◦, 
although overhanging features may be produced without supports, the 
angled surface begins to suffer in quality due to the molten filament’s 
inherent stickiness (Montero, Roundy, Odell, Ahn, & Wright, 2001). For 
that reason, supports are highly recommended. Another issue that oc-
curs when printing overhangs is curling. The newly printed layer be-
comes increasingly thinner at the overhang’s edge, resulting in 
differential cooling causing it to deform upward (Gibson et al., 2014). 
For these two reasons, the prototype in Fig. 3 is designed with an 
overhang of 45◦ to stress this boundary condition. 

Concerning the second prototype, the door’s hinge, it is character-
ized by a bridge structure. Bridging occurs when the machine has to 
deposit material between two supports or anchor points. In general, the 
shorter is the length of the bridge, the greater is its structural success. 
Instead, the longer the bridge, the more post-processing and supports 
will require (Gibson et al., 2014). The bridge is 24 mm in length in the 
sample produced and is printed without supports. 

Fig. 2. The six steps to produce the samples (3D model creation, STL file, File transfer to the machine, Machine setup, Build, Part removal).  

Table 2 
Levels of process parameters.  

Process parameter Symbol Minimum 
value 

Center 
value 

Maximum 
value 

Layer height L [mm] 0.12 0.20 0.31 
Fill density F [%] 5 10 20 
Extruder 

Temperature 
T [◦C] 205 215 220 

Number of shells S [–] 1 2 3 
Print speed P [mm/ 

s] 
140 150 160 

Retraction speed R [mm/ 
s] 

45 50 60  
Fig. 3. Prototypes of a connector for a pump and of a door’s hinge.  
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3. Design of experiments and experimental details 

3.1. Design of experiments 

As abovementioned, the six process parameters or control factors 
chosen are: layer height (L), fill density (F), extruder temperature (T), 
number of shells (S), print speed (P), and retraction speed (R). These 
parameters were kept at two levels, i.e., “minimum value” and 
“maximum value” (Table 2). Minimum, center and maximum values of 
each process parameter were obtained starting from the default values 
suggested by the producer, also taking into account the values used in 
the scientific literature and the empirical tests carried out on the ma-
chine in preliminary tests. From the manufacturing viewpoint, the levels 
of each process parameter can be set in the FDM machine through the 
MakerBot Desktop application before each planned test. 

With respect to the traditional full-factorial experimental plan, 
which would require 64 tests, a two-level factorial with half fractional 
design is performed, resulting in 32 experiments (see Table 3). The order 
of the tests is randomized. This half fractional design with six control 
factors is a Resolution VI design. This means that no main effects or 2- 
factor interactions are aliased with any other main effects or 2-factor 
interactions. However, 2-factor interactions are aliased with 4-factor 
interactions and main effects are aliased with 5-factor interactions 
(Montgomery, 2017). The complete list of the aliases generated by the 
half factorial design is provided: L = F⋅T⋅S⋅P⋅R, F = L⋅T⋅S⋅P⋅R, T =
L⋅F⋅S⋅P⋅R, S = L⋅F⋅T⋅P⋅R, P = L⋅F⋅T⋅S⋅R, R = L⋅F⋅T⋅S⋅P, L⋅F = T⋅S⋅P⋅R, L⋅T =
F⋅S⋅P⋅R, L⋅S = F⋅T⋅P⋅R, L⋅P = F⋅T⋅S⋅R, L⋅R = F⋅T⋅S⋅P, F⋅T = L⋅S⋅P⋅R, 
F⋅S L⋅T⋅P⋅R, F⋅P = L⋅T⋅S⋅R, F⋅R = L⋅T⋅S⋅P, T⋅S = L⋅F⋅P⋅R, T⋅P = L⋅F⋅S⋅R, T⋅R 
= L⋅F⋅S⋅P, S⋅P = L⋅F⋅T⋅R, S⋅R = L⋅F⋅T⋅P, P⋅R = L⋅F⋅T⋅S. 

The ANOVA is applied to assess if the observed differences in the 
responses, caused by the parameters’ variation, are systematic rather 
than physiological. Therefore, the statistically significant parameters 
identified using the ANOVA are used as predictors in the regression 

models correlating each response with the relevant parameters. 

3.2. Experimental details 

Following the experimental plan, the 32 printing jobs resulted in 64 
parts: 32 parts representing the connector for the pump and 32 parts 
representing the door’s hinge. After the production, measurements are 
performed. The Printing Time (PT) and the Energy Consumption (EC) 
data are measured during the printing process for each job. Data for each 
job’s energy consumption have been collected during the process using 
the Energy Logger 4000 EKM device by VOLTCRAFT. It is worth 
remarking that printing time and energy consumption values are not 
representative of a single object. Indeed, they are relevant to each job, 
which consists of the two parts together. 

For the surface roughness and the dimensional accuracy, the parts 
are marked and measured afterward. In detail, the surface roughness is 
measured according to industrial standards ISO 4287 and ISO 4288, 
using a roughness tester RTP80 with a 2 μm radius stylus tip (ISO 
4287:2009; ISO 4288:2000). Two surfaces for the overhang (Surface 1 
and Surface 2) and three for the bridge (Surface 3, Surface 4 and Surface 
5) are measured (see Fig. 4). For such surfaces, characterized by a pe-
riodic profile due to the process’s intrinsic characteristics, the prescribed 
sampling length is based on the mean width of profile elements (RSm). 
When RSm is included between 0.4 mm and 1.3 mm, it is recommended 
to use a sampling length for filtering (cut-off length) of 2.5 mm and an 
evaluation length of 12.5 mm [38]. The Robust Regression Gaussian 
Filter, defined in ISO 16610–31, is used (ISO 16610-31:2016). It is an 
iterative algorithm that calculates local weights based on the distance 
between the primary and waviness profiles. This filter is the preferred 
choice for structured surfaces, stratified surfaces and in the presence of 
form, grooves or pores (ISO 16610-31:2016). In addition to the 
parameter RSm, the roughness parameter calculated from the filtered 
roughness profile is Ra, defined as the average value of the ordinates 
from the centerline. It is theoretically derived as the arithmetic average 
value of departure of the profile from the mean line along a sampling 
length. Three measurements, each spaced as far apart as possible on the 
surface, in the direction perpendicular to the deposition path, are per-
formed on each surface of the samples. The Ra and RSm values are 
derived and the average values are examined. Accordingly, each surface, 
both of the overhang and the bridge, is characterized by two output 
variables (for instance, Surface 1 by Ra1 [µm] and RSm1 [mm]). 

These measurements aim to evaluate the effect of the different ori-
entations of the surfaces with respect to the build direction on the parts 
surface quality. Since the two different geometries are built in the 
orientation of Fig. 4, it is expected that Surface 3 and Surface 1 are 
rougher than Surface 2 and Surface 4. This expectation will be confirmed 
by analyzing the Ra and RSm values (see next Section 4). An example of 
the graph obtained by the surface roughness tester is provided in Fig. 5. 

For dimensional accuracy, the parts are measured using a digital 
caliper with a resolution of one-hundredth of a millimeter. One measure 
for each dimension is taken afterward (see Fig. 6). Since the parts are 

Table 3 
Arrangement of the two-level factorial with half fractional design for the six 
process parameters used in the present study.  

Run Order L [mm] F [%] T [◦C] S [–] P [mm/s] R [mm/s] 

1  0.310  0.050 205 3 140 45 
2  0.120  0.200 220 1 160 60 
3  0.310  0.200 205 1 140 45 
4  0.310  0.200 220 1 140 60 
5  0.310  0.200 220 3 140 45 
6  0.310  0.200 205 1 160 60 
7  0.310  0.200 220 3 160 60 
8  0.310  0.050 220 1 160 60 
9  0.310  0.050 205 3 160 60 
10  0.310  0.200 220 1 160 45 
11  0.310  0.050 220 3 140 60 
12  0.120  0.050 205 3 140 60 
13  0.310  0.050 205 1 160 45 
14  0.120  0.200 205 3 140 45 
15  0.120  0.050 205 3 160 45 
16  0.120  0.200 220 3 140 60 
17  0.120  0.050 220 1 140 60 
18  0.120  0.050 205 1 140 45 
19  0.120  0.200 205 1 160 45 
20  0.120  0.050 220 1 160 45 
21  0.120  0.200 220 1 140 45 
22  0.120  0.200 205 3 160 60 
23  0.120  0.050 205 1 160 60 
24  0.310  0.200 205 3 140 60 
25  0.310  0.050 220 1 140 45 
26  0.120  0.200 205 1 140 60 
27  0.120  0.050 220 3 140 45 
28  0.120  0.050 220 3 160 60 
29  0.310  0.050 220 3 160 45 
30  0.310  0.200 205 3 160 45 
31  0.310  0.050 205 1 140 60 
32  0.120  0.200 220 3 160 45  

Fig. 4. Measurements of the surface roughness. Surface 1 and Surface 2 are 
analyzed on the overhang, while Surface 3, Surface 4 and Surface 5 on 
the bridge. 
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created as prototypes, the dimensions measured are the ones that may 
require a more stringent tolerance, rather than the total height, width, 
and length, which could vary within certain limits. The target values of 
the dimensions that need to be achieved by the two prototypes are as 
follows: DA1 = DA2 = 14.59 mm, DA3 = 18.76 mm, DA4 = DA8 =
13.34 mm, DA5 = 10.00 mm, DA6 = DA7 = 23.35 mm, DA8 = 13.65 
mm. The measurement results for all the responses are reported in 
Table A.1. 

4. Experimental results and discussion 

4.1. DoE analysis 

The experiment aims to optimize the process parameters in the FDM 
process to get better responses. In detail, the objectives are minimizing 
printing time, energy consumption and surface roughness, and maxi-
mizing dimensional accuracy (i.e., minimizing the deviation from the 
target value of each dimension). The arrangement of the DoE allows the 

development of the appropriate empirical equations (first-order multi-
ple linear regression equations, including two-way interactions), defined 
as follows: 

yj = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + β12x1x2 + β13x1x3+

+β14x1x4 + β15x1x5 + β16x1x6 + β23x2x3 + β24x2x4 + β25x2x5 + β26x2x6+

+β34x3x4 + β35x3x5 + β36x3x6 + β45x4x5 + β46x4x6 + β56x5x6

(1)  

where yj (j = 1, …, 20) corresponds to each response of Table A.1 (PT, 
EC, DA1-DA8, Ra1-Ra5, RSm1-RSm5). 

The predicted response (yj) is therefore related to the set of regres-
sion coefficients (β): the intercept (β0), linear (β1,β2,β3,β4,β5,β6), and 
interaction (β12,β13,β14,β15,β16,β23,β24,β25,β26,β34,β35,β36,β45,β46,β56). 
The software MINITAB® is used to perform the analysis. The ANOVA, 
the coefficients for each factor and their p-values (see Table A.2) are 
obtained separately for each response. 

In order to reveal the cause-and-effect relationships between the six 
factors and the twenty responses, a first qualitative analysis for each 
response may be carried out through the analysis of the “Interaction 
plot”. This plot is used to visualize possible interactions between vari-
ables. If there is no interaction, the lines in the plot are parallel. On the 
contrary, the higher the degree of interaction, the greater is the differ-
ence in slope between the lines. However, the interaction plot does not 
tell if the interaction is statistically significant. For DA1 (see Fig. 7), 
many interactions between parameters appear to be evident, such as the 
interactions between L and F, L and T, F and T, L and P, S and P, F and S. 

Through the ANOVA, the significance of every single main effect and 
interactions between variables is derived separately for each response. 
Furthermore, the coefficients of determination (R-Sq [%], R-Sq adj [%]) 
have been calculated for each variable. These values indicate whether 
the model fits the data adequately or not. The R-Sq value always in-
creases when additional predictors are added to a model, whereas the R- 
Sq adj shows in percentage how much the model explains the variance of 
the responses considering the numbers of predictors (Myers & Mont-
gomery, 1995). The R-Sq for the printing time is 99.99% and for energy 

Fig. 5. Surface Roughness Graph of Surface 1.  

Fig. 6. Measurements of dimensional accuracy.  
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consumption is 99.92%. For the dimensional accuracy of the bridge, the 
R-Sq varies from 92.49% to 68.09%; for the overhang from 93.40% to 
84.14%. Concerning the Ra surface roughness parameters, the co-
efficients of determination for the overhang are 97.57% and 90.79%, 
and for the bridge varies from 77.83% and 92.07%. As far as RSm pa-
rameters are concerned, R-Sq related to the overhang are 97.53% and 
75.85%, and for the bridge varies from 71.70% and 85.81%. 

Based on the results, the models are subsequently reduced through 
the standard stepwise regression. This method both adds and removes 
predictors as needed for each step. It stops when all variables not in the 
model have p-values greater than the specified Alpha-to-Enter value and 
when all variables in the model have p-values less than or equal to the 
specified Alpha-to-Remove value (Montgomery, Runger, & Hubele, 
2009). According to the literature, the Alpha-to-Enter and 
Alpha–to–Remove values are set to 0.15 (15%) (Wiegand, 2010). The 
new p-values obtained from ANOVA are reported in Table 4. In the table, 
differentiation among the factors which have p-value ≤ 1% (a very 
significant influence) and p-value ≤ 5% (a significant influence) is 
introduced. The factors with p-value ≤ 1% are double-asterisked and the 
factors with p-value ≤ 5% are asterisked. If a term is not included in the 
model after the stepwise procedure, then no p-value is reported in the 
table. Comparing the R-Sq adj of the reduced models with the previous 
ones, all the coefficients increased or remained constant, indicating that 
the terms deleted are not significant. 

A mathematical model of the relationship between process parame-
ters and each response is developed by regression analysis, based on the 
previous analysis. The complete list of regression models is given in 
Table A.3 and their measures of goodness-of-fit in Table 4. For example, 
the following mathematical model is developed for the response DA1 
[mm] (obtaining R-Sq = 68.33%): 

DA1 = 11.02+ 1.56L − 0.0995S+ 0.0249P+ 0.0839R − 0.0482L⋅R
+ 0.471F⋅S − 0.0152F⋅R − 0.000542P⋅R

(2) 

Besides, the surface plots of each response are obtained. In Fig. 8, the 
surface plot of DA1 versus F and L, and DA1 versus P and S are reported. 

As shown in Table A.3, depending on the model considered, process 
parameters and interactions can have a direct or inverse proportionality 
effect. For instance, considering dimensional accuracy responses (DA1- 

DA8), layer height can have a directly proportional effect (as for DA1 
and DA2) or an inversely proportional effect (as for DA3 and DA4). 
Therefore, given the complexity of the production process, identifying 
the different mathematical relationships between process parameters 
and responses is fundamental for improving the production process. In 
particular, as it will be described in the next Section 4.3, the modeling of 
the responses will enable to perform optimizations and thus obtain the 
optimal parameter sets. 

Moreover, for every regression model, externally studentized re-
siduals, also called studentized deleted residuals, are obtained (Mont-
gomery, Peck, & Vining, 2012). The analysis of residuals is essential to 
understand if the ordinary least squares assumptions are satisfied. If 
these assumptions are fulfilled, then the regression produces unbiased 
coefficient estimates with the minimum variance (Montgomery et al., 
2009). In detail, the following tests on externally studentized residuals 
are performed. Firstly, a normal Quantile-Quantile (Q-Q) plot of re-
siduals for each selected regression is obtained. If the data points follow 
a 45◦ line, the normality assumption is likely to hold. Secondly, a test on 
the sample Skewness and Kurtosis (both approximately normal) of the 
residuals for each selected regression is carried out (Joanes & Gill, 
1998). If both tests pass, the normality assumption is strengthened. 
Besides, a Shapiro-Wilk test on those same residuals for a final confir-
mation of normality is performed (Shapiro & Wilk, 1965). Finally, a Box 
and Whisker Plot for residuals is constructed to check for outliers 
(Devore, 2011). For instance, considering the regression model in Eq. (2) 
which refers to DA1, the normal Q-Q plot of residuals provided in Fig. 9 
shows that residuals follow a normal distribution. The Skewness test and 
the Kurtosis test (α = 0.05) cannot reject the null hypothesis of a normal 
distribution of residuals (p-value is, respectively, 0.97 and 0.70). Also, 
by performing the Shapiro-Wilk normality test (α = 0.05), the null hy-
pothesis of a normal distribution of residuals cannot be rejected (p-value 
= 0.71). From the Box and Whisker Plot, no outlier has been identified. 
The described procedure was applied to the externally studentized re-
siduals of all the regression models reported in Table A.3. The normal Q- 
Q plots and the normality tests failed to reject the hypothesis of 
normality of residuals for all the models. However, some outliers have 
been identified by the Box and Whisker Plots. In detail, the residuals 
detected as outliers correspond to the following tests: test no. 2 for EC, 

Fig. 7. Interaction plot for DA1 [mm]  
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test no. 1 and 24 for Ra1 and RSm1, test no. 22 for Ra2, test no. 26 for 
Ra4, and test no. 23 for DA5. The prevalence of outliers related to 
roughness measurements can be justified by the fact that in FDM parts, 
typically, the extent of roughness defects is greater than that of other 
issues, such as dimensional or process faults (Wickramasinghe, Do, & 
Tran, 2020). Additional normal Q-Q plots and normality tests results on 
externally studentized residuals are provided in Fig. A.1 for the re-
sponses PT, EC, Ra5 and RSm5. 

4.2. Evaluation of quadratic effects 

In the scientific literature, it has been demonstrated that some pa-
rameters may have a quadratic effect on the responses (Lužanin et al., 
2014; Sanatgar et al., 2017). To this end, four central points are added to 
the experiment, allowing the evaluation of the model’s curvature. As 
shown in Table A.4, which reports the p-values resulting from the 
ANOVA of the stepwise regression procedure, the quadratic effect is 
significant for some responses, including PT, EC, DA2, Ra1, Ra4 and 
RSm1. By introducing these 4 points, the R-Sq adj of most of the models 
has improved or remained unchanged. However, R-Sq adj has been 
reduced for DA1, DA4, DA5, DA8, Ra1, Ra3, Ra4 and RSm1. Although 
some models present a curvature, it is impossible to attribute the 
quadratic effect to a specific process parameter. In fact, only one 
quadratic effect at a time can be estimated because of the used design: 
starting from a fractional design and adding center points, the vectors of 
quadratic terms are all the same. As a result, all quadratic effects are 
aliased among them. For that reason, without further experiments, no 
regression curves can be derived for forecasting and optimization. 
Future research will include replications and axial points (also called 
star points) to estimate all the quadratic effects and improve forecasting 
models accordingly. 

4.3. Optimization 

In order to optimize the responses, the regression models used are 
those including the parameters and interactions that have been identi-
fied as significant by the stepwise regression procedure (see Table 4 and 
Table A.3). The optimal combinations of parameters that optimize the 
response curves are obtained, firstly for optimizing all responses jointly 
(general scenario), and then a set of responses (scenarios I, II, IIIa and 
IIIb, IVa and IVb), as summarized in Table 5. Since the joint optimization 
has to satisfy the requirements for all the selected responses, the more 
responses to be optimized, the more difficult it is to achieve high pre-
dictability due to the conflicting objectives. Therefore, different sce-
narios are analyzed in order to improve the percentage of predictability 
of responses. 

In the general scenario, all responses are considered and optimized. 
In detail, the printing time, energy consumption and surface roughness 
are minimized, while all the dimensions are set to their target values. 
When different responses are optimized together, for each j-th response, 
an index “dj” is provided. It represents the individual desirability and 
evaluates how the settings optimize the response. For instance, if the 
objective is to minimize the j-th response, dj is calculated as: 

dj = 0 if ŷj > Uj 

dj = (Uj − ŷj)/(Uj − Tj) if Tj ≤ ŷj ≤ Uj 

dj = 1 if ŷj < Tj 

where ŷj is the predicted value of the j-th response, Uj, Tj and Lj are, 
respectively, the highest acceptable value, the lowest acceptable value 
and the target value for the j-th response. 

From the weighted geometric mean of the individual desirabilities, 
the composite desirability “D”, which evaluates how the settings opti-
mize the overall set of responses, is obtained. The optimal solution is 
achieved when the composite desirability obtains its maximum. In Ta
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detail, the formula for the composite desirability, when the importance 
is the same for each response, is: 

D = (d1∙d2∙d3∙⋯∙dn)
1/n (3)  

where n is the total number of responses optimized in the scenario and dj 
represents the individual desirability for the j-th response (i = 1, …, n). 
For instance, if two responses are minimized and the obtained individual 
desirabilities are d1 = 80% and d2 = 90%, the composite desirability is 
D = (d1∙d2)

1/2
= 84.85%. 

When all the responses are considered, the composite desirability 
obtained is D = 70.86% and the configuration of the process parameters 
is: layer height = 0.26 mm, fill density = 13%, extruder temperature =
215 ◦C, number of shells = 2, printing speed = 147 mm/s and retraction 
speed = 54 mm/s. Therefore, all process parameters must be set to an 
intermediate value in order to optimize all responses together. The 

optimal responses with the relevant standard error and prediction in-
tervals are obtained using these process parameters. 

In order to optimize each variable at a time, or group of similar 
variables such as dimensional accuracy and surface roughness, further 
four scenarios are created. In the I scenario, the printing time is mini-
mized, and the other responses are not optimized. The process param-
eters which result in the best printing time, which is 52.75 min, are 
maximum layer height (0.31 mm), minimum fill density (5%) and 
minimum number of shells (1). The other process parameters, i.e., T, P 
and R, can be set to any value in their range (minimum value-maximum 
value, see Table 2) because they are not significant in predicting the 
printing time. Indeed, as shown in Table 4, their effect on printing time 
was not statistically significant. 

In the II scenario, the goal is to minimize energy consumption, while 
the other target variables are not optimized. With layer height set to the 
maximum (0.31 mm), fill density to the minimum (5%), extruder tem-
perature to 220 ◦C and number of shells to 1, the optimal energy con-
sumption obtained is 2.79 kWh. As for the printing time, L is the 
maximum value, as well as T, whereas F and S are at their minimum 
value. The values obtained are reasonable and reflect the system’s 
physical nature, except for the temperature that, however, contributes 
only marginally to the variations of energy consumption. 

In the III scenario, the responses of the overhang’s surface roughness 
are first minimized and then those of the bridge. In the first case – III 
scenario (a) – Ra1, Ra2, RSm1 and RSm2 are optimized (composite 
desirability D = 86.83%). The optimal process parameters obtained are 
layer height = 0.12 mm, fill density = 5%, extruder temperature =
220 ◦C, number of shells = 1, printing speed = 140 mm/s, and retraction 
speed = 60 mm/s. Therefore, L, S, F, and P have to be set at their min-
imum value, whereas T and R at their maximum value. In the second 
case – III scenario (b) -, for the bridge, optimizing Ra3, Ra4, Ra5 and 
RSm3, RSm4, RSm5 the optimal process parameters obtained are layer 

Fig. 8. Surface plots of DA1 [mm] versus F [%] and L [mm], and DA1 [mm] versus P [mm/s] and S [–]  

Fig. 9. Normal Q-Q plot of externally studentized residuals for DA1 [mm]  

Table 5 
Optimization scenarios.   

Responses to be optimized 

Printing 
time 

Energy 
consumption 

Overhang surface 
roughness 

Bridge surface roughness Overhang dimensional 
accuracy 

Bridge dimensional 
accuracy 

PT EC Ra1, Ra2 and RSm1, 
RSm2 

Ra3, Ra4, Ra5 and RSm3, RSm4, 
RSm5 

DA1, DA2, DA3 DA4, DA5, DA6, DA7, 
DA8 

General 
scenario 

X X X X X X 

I X      
II  X     
IIIa   X    
IIIb    X   
IVa     X  
IVb      X  
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height = 0.31 mm, fill density = 20%, extruder temperature = 205 ◦C, 
number of shells = 1, printing speed = 160 mm/s and retraction speed 
= 60 mm/s. In such a case, the composite desirability is 62.19%. Thus, T 
and S parameters are at the minimum level and L, F, P and R at the 
maximum level. When comparing the parameters obtained with those of 
the overhang, it is evident that for T, L, F and P the opposite setting 
occurs, while parameters S and R may be set at the same value. Hence, 
while the overhang requires low layer height levels, fill density and 
printing speed, and high value of temperature, the bridge is character-
ized by lower surface roughness if built with high layer height, density 
and printing speed, but with low values of temperature. The underlying 
reason is the geometric and structural differences between the two 
samples (see Fig. 4). 

In the IV scenario, the aim is to maximize the overhang’s dimen-
sional accuracy and that of the bridge. For the first – IV scenario (a) – the 
process parameters which lead to the target values of the dimensions are 
layer height = 0.26 mm, fill density = 13%, extruder temperature =
220 ◦C, number of shells = 2, printing speed = 140 mm/s, and retraction 
speed = 53 mm/s. In this case, the composite desirability D is 100%. 
Therefore, to obtain better dimensional accuracy, T should achieve high 
values and P low values, while L, F, S and R must be set to intermediate 
values. When optimizing the dimensional accuracy of the bridge – IV 
scenario (b) – the parameters which should be used are: layer height =
0.27 mm, fill density = 19%, extruder temperature = 211 ◦C, number of 
shells = 2, printing speed = 159 mm/s, and retraction speed = 45 mm/s. 
In such a case, F, P and L assume high values, T and S intermediate 
values and R low values. In this case, the composite desirability is D =
99.59%. The differences between the process parameters obtained for 
the overhang and the bridge, mainly referring to the print speed, are 

again due to geometric and structural reasons. Consequently, choosing 
the parameters to be used becomes closely linked to the goal of the 
optimization. 

4.4. Experimental validation 

In order to test the adequacy of the models relating each response 
with the process parameters and, accordingly, the set of parameters that 
optimize the response(s) in each scenario (see Section 4.3), experimental 
validations are performed. The method adopted for the validation con-
sists of verifying if the experimental value of each j-th response (j = 1,…, 
20) of ad-hoc produced samples falls within the corresponding predic-
tion interval. It has to be reminded that each j-th response prediction 
interval is the range in which the predicted j-th response for a new 
observation is expected to fall (Montgomery et al., 2012). 

Specifically, four new parts are produced for each scenario, and the 
related responses are measured using the same approach described in 
Section 3.2. After that, the responses’ obtained experimental values are 
compared with the corresponding predicted values (obtained by 
exploiting the prediction models) and the prediction intervals, calcu-
lated using the software MINITAB®. 

In the first scenario, the optimal set of parameters leading to the best 
printing time is validated by the production of 4 samples. The values of 
T, P and R are set randomly in the range between 205 ◦C and 220 ◦C, 
140 mm/s and 160 mm/s, 45 mm/s and 60 mm/s, respectively, because 
they are not statistically significant in predicting the printing time, while 
L, F and S are set to their optimal value. As shown in Fig. 10, all the 
experimental values fall within the printing time’s prediction interval, 
thus demonstrating the adequacy of the prediction model. 

Fig. 10. Experimental validation of scenarios I, II, III and IV: experimental values, predicted values and prediction intervals.  
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In the second scenario, the combination of parameters resulting in 
the minimum value of energy consumption is validated through the 
other four samples’ production. The parameters used are those obtained 
from the optimization, except for P and R that are set at random values in 
their range. 

In the third scenario, which aims at minimizing the roughness of the 
overhang, III scenario (a), and of the bridge, III scenario (b), two over-
hang samples and two bridge samples are produced, using the optimal 
set of parameters reported in Section 4.3. 

Finally, in the last scenario, in which the dimensional accuracy is 
optimized separately for the overhang, IV scenario (a), and for the 
bridge, IV scenario (b), again two overhang samples and two bridge 
samples are produced using the optimal set of parameters. 

The experimental values and the related prediction intervals of the 
responses, separately for each scenario, are shown in Fig. 10. 

5. Conclusions 

This study presents a statistical analysis to investigate the cause-and- 
effect relationships among selected process parameters and output 
variables within the MakerBot z18 system. These experimental models 
are used to improve the FDM process in terms of efficiency and product 
quality. The macro responses analyzed in the experiments included 
printing time, energy consumption, surface quality and dimensional 
accuracy. These were split into twenty responses and measured on the 
PLA samples produced. By combining literature analysis and practical 
experience, six process parameters were selected and then analyzed by a 
two-level factorial with half fractional design. Accordingly, 32 tests 
were carried out, and the produced samples were examined to study the 
effect of process parameters and their interactions on the mentioned 
responses. The six process parameters considered were: layer height, fill 
density, extruder temperature, number of shells, printing speed and 
retraction speed. Firstly, through the ANOVA, the significance of every 
single main effect and interactions between process parameters was 
derived separately for each response. In addition, a differentiation 
among the factors with p-value ≤ 1% (a very significant influence), p- 
value ≤ 5% (a significant influence) and p-value > 5% (no influence) has 
been introduced. Then, in order to select only significant factors, the 
standard stepwise regression was applied. Twenty final regression 
models were obtained. 

Because of the high number of variables and interactions, five 
different optimization scenarios were analyzed (one general and four 
specific), and the optimal settings of the parameters were determined for 
each goal selected. In the general scenario, all responses are jointly 
optimized. It was found that the process parameters must be set to in-
termediate values to optimize both part quality and process efficiency. 
Regarding process efficiency, less dense workpieces with thicker layers 
and fewer shells ensure minimum process time and energy consumption. 
To minimize surface roughness, the different geometric and structural 
characteristics of the parts need to be considered. Specifically, the 
experimental results have shown that while the overhang requires low 
values of layer height, fill density and printing speed and a high value of 
temperature, the bridge needs opposite parameter settings. Finally, to 
maximize dimensional accuracy, the design features of parts have a key 
role. For instance, low printing speed is necessary to achieve better 
dimensional accuracy for overhangs, which leads to opposite results for 
bridges. Therefore, the evaluation of such experimental results shows 
that process parameters’ optimal settings can vary according to the 
considered optimization objective. Moreover, optimizing different re-
sponses together, especially if they are heterogeneous, may lead to 
reduce the percentage of their predictability. The insights gained from 
this study may be of assistance to production designers in the continuous 
improvement of FDM efficiency and quality of products, both prototypes 

and finished parts. 
Further investigations will be carried out to include star points in the 

experimental plan, in addition to the central points, to investigate the 
curvature and estimate the effect of the quadratic terms that were not 
included in the preliminary models. Moreover, different weights could 
be assigned to the responses in the optimization scenarios, giving more 
importance to some objectives and less to others. Future research will be 
conducted to assess the models’ adequacy and the optimal parameters 
settings by producing different geometries and using different materials 
or machines. Finally, different modeling approaches (e.g., grey box and 
white box) could be used to combine the statistical knowledge with the 
physical relationships. 
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Appendix A 

A.1 Detail on the experiments 

This section contains the detail on the measurements of the responses 
described in Section 3.2. Table A1. 

A.2 Detail on data analysis 

This section contains further tables related to the data analysis 
described in Section 4. 

Table A2 refers to the p-values table obtained from the ANOVA 
presented in Section 4.1. In the table, the factors which have p-values 
equal or less than 1% are double-asterisked, while p-values equal or less 
than 5% are asterisked. 

Table A3 contains the regression models related to the analysis 
performed using the stepwise regression in Section 4.1 (see also 
Table 4). 

Fig. A1 provides additional normal Q-Q plots and normality test re-
sults on externally studentized residuals related to the regression models 
of Table A.3 for selected responses. 

Table A4 refers to the p-values table obtained from the ANOVA after 
the stepwise regression related to the DoE, including four central points, 
as detailed in Section 4.2. In the table, the factors which have p-values 
equal or less than 1% are double-asterisked, while p-values equal or less 
than 5% are asterisked. 
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Table A1 
Measurement results for the responses of the implemented DoE.  

Run 
Order 

PT 
[min] 

EC 
[kWh] 

DA1 
[mm] 

DA2 
[mm] 

DA3 
[mm] 

DA4 
[mm] 

DA5 
[mm] 

DA6 
[mm] 

DA7 
[mm] 

DA8 
[mm] 

Ra1 
[µm] 

Ra2 
[µm] 

Ra3 
[µm] 

Ra4 
[µm] 

Ra5 
[µm] 

RSm1 
[mm] 

RSm2 
[mm] 

RSm3 
[mm] 

RSm4 
[mm] 

RSm5 
[mm] 

1 58  3.40  14.43  14.40  19.95  14.15  10.16  24.33  24.34  13.54  83.63  25.23  43.70  20.53  26.27  1.038  0.627  0.497  0.582  0.385 
2 141  19.67  14.51  14.77  19.44  13.85  10.03  24.01  24.01  13.55  22.27  8.36  81.80  7.33  22.17  0.328  0.637  0.802  0.566  0.365 
3 65  4.29  14.51  14.65  19.33  13.78  10.00  24.21  24.24  13.72  36.77  27.47  40.13  13.27  28.33  0.475  0.743  0.509  0.570  0.438 
4 65  4.47  14.54  14.62  19.43  13.85  10.03  24.06  24.12  13.54  38.23  21.93  33.90  14.12  24.30  0.512  0.698  0.424  0.570  0.358 
5 66  4.81  14.39  14.31  19.83  14.05  10.18  24.29  24.27  13.61  70.73  19.97  46.40  18.40  33.03  0.867  0.571  0.568  0.855  0.469 
6 65  3.96  14.22  14.49  19.39  13.77  10.06  24.28  24.29  13.83  35.27  24.53  59.73  10.31  28.17  0.479  0.644  0.657  0.537  0.443 
7 66  4.53  14.29  14.19  19.65  13.88  10.16  24.18  24.21  13.71  62.97  21.27  44.47  13.00  32.47  0.765  0.585  0.527  0.678  0.541 
8 53  3.09  14.08  14.53  19.08  13.94  10.03  24.27  24.30  13.54  37.73  23.20  38.63  20.83  29.53  0.524  0.590  0.465  0.455  0.417 
9 58  3.55  14.03  14.18  19.67  14.07  10.08  24.28  24.25  13.65  61.30  18.23  43.83  19.37  27.73  0.731  0.551  0.481  0.662  0.409 
10 65  4.59  14.63  14.43  19.35  13.95  10.17  24.10  24.14  13.33  39.70  26.07  36.67  15.23  26.50  0.503  0.720  0.515  0.674  0.422 
11 58  2.93  14.19  14.16  19.73  14.02  10.03  24.37  24.43  13.62  65.13  18.07  44.67  18.87  29.07  0.820  0.511  0.580  0.547  0.467 
12 132  16.69  14.36  14.28  19.43  13.85  10.24  24.03  24.09  13.70  22.80  9.19  90.00  9.85  25.33  0.369  0.637  0.851  0.518  0.348 
13 53  3.05  14.60  14.41  19.09  13.73  10.03  24.25  24.34  13.58  37.07  23.73  39.03  19.17  38.23  0.480  0.595  0.502  0.462  0.549 
14 142  19.07  14.62  14.30  19.45  13.85  10.10  24.17  24.22  13.75  24.23  9.90  78.10  8.79  35.67  0.345  0.681  0.811  0.630  0.528 
15 132  16.93  14.56  14.55  19.42  13.88  10.06  24.11  24.20  13.81  24.73  10.71  85.43  8.80  34.17  0.364  0.600  0.719  0.598  0.544 
16 142  20.12  14.51  14.56  19.49  13.86  9.89  24.07  24.18  13.84  22.20  11.02  78.57  8.06  29.30  0.326  0.711  0.764  0.647  0.473 
17 125  14.97  14.71  14.68  19.09  13.77  10.15  24.10  24.10  13.74  21.73  7.05  88.57  11.42  21.30  0.332  0.574  0.881  0.602  0.347 
18 125  14.63  14.70  14.46  19.09  13.86  10.12  24.12  24.19  13.61  22.30  8.10  91.40  8.38  27.00  0.342  0.625  0.873  0.638  0.458 
19 141  17.99  14.49  14.61  19.29  13.94  10.00  24.18  24.19  13.88  21.87  10.88  83.57  12.08  27.10  0.354  0.641  0.769  0.608  0.460 
20 125  15.24  14.72  14.75  19.33  13.79  10.02  24.16  24.22  13.52  21.27  14.20  80.83  13.77  25.20  0.328  0.714  0.781  0.605  0.425 
21 141  18.86  14.50  14.63  19.26  13.89  10.00  24.12  24.09  13.48  15.53  12.03  89.77  11.92  16.83  0.243  0.726  0.846  0.743  0.284 
22 142  19.02  14.63  14.53  19.29  13.87  10.51  24.08  24.10  13.67  19.70  17.40  78.67  10.02  22.63  0.292  0.807  0.751  0.629  0.380 
23 125  14.35  14.67  14.58  19.14  13.89  10.90  24.25  24.26  13.81  22.27  8.01  90.33  12.69  17.87  0.353  0.653  0.824  0.622  0.274 
24 66  4.43  14.52  14.32  19.61  14.00  10.30  24.28  24.32  13.62  56.23  16.80  62.90  14.57  23.67  0.698  0.587  0.654  0.530  0.334 
25 53  3.01  14.67  14.57  19.00  13.75  10.17  24.13  24.13  13.97  41.53  21.57  61.00  24.53  23.07  0.516  0.550  0.726  0.412  0.330 
26 141  18.11  14.66  14.81  19.26  13.85  10.40  24.04  24.01  13.86  22.30  9.49  79.63  20.23  14.87  0.297  0.657  0.736  0.372  0.247 
27 132  17.53  14.81  14.53  19.30  13.81  10.12  24.11  24.07  13.77  15.10  10.84  77.10  14.43  15.57  0.253  0.701  0.749  0.442  0.233 
28 132  17.35  14.49  14.38  19.27  13.79  10.20  24.12  24.09  13.74  15.57  8.60  78.47  11.16  15.80  0.245  0.779  0.720  0.496  0.248 
29 58  3.61  14.48  14.40  19.55  13.97  10.21  24.31  24.31  13.76  49.60  16.93  57.13  19.97  22.80  0.633  0.548  0.715  0.451  0.321 
30 66  4.42  14.50  14.43  19.57  13.92  10.24  24.27  24.25  13.74  66.53  15.03  61.83  16.77  26.10  0.779  0.591  0.648  0.428  0.397 
31 53  2.83  14.64  14.71  19.22  13.80  10.12  24.39  24.39  13.85  41.60  20.03  57.30  22.50  25.87  0.514  0.592  0.634  0.425  0.402 
32 142  19.87  14.74  14.69  19.31  13.87  10.14  24.08  24.08  14.02  18.77  7.66  85.70  13.67  20.97  0.287  0.658  0.876  0.452  0.305  
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Table A2 
p-value [%] table resulting from the ANOVA.   

PT 
[min] 

EC 
[kWh] 

DA1 
[mm] 

DA2 
[mm] 

DA3 
[mm] 

DA4 
[mm] 

DA5 
[mm] 

DA6 
[mm] 

DA7 
[mm] 

DA8 
[mm] 

Ra1 
[µm] 

Ra2 
[µm] 

Ra3 
[µm] 

Ra4 
[µm] 

Ra5 
[µm] 

RSm1 
[mm] 

RSm2 
[mm] 

RSm3 
[mm] 

RSm4 
[mm] 

RSm5 
[mm] 

L [mm] <0.1**  <0.1**  0.3**  <0.1**  <0.1**  2.8*  29.1  <0.1**  <0.1** 20.6  <0.1**  <0.1**  <0.1**  <0.1**  2.2*  <0.1**  1.1*  <0.1**  54.4  13.3 
F [%] <0.1**  <0.1**  87.6  12.0  2.1*  78.6  61.1  1.0**  2.4* 94.5  73.9  42.6  65.2  2.0*  79.3  39.0  4.3*  79.0  9.5  55.3 
T [◦C] 100  0.3**  87.6  30.5  88.0  67.6  5.3*  2.0*  3.2* 32.1  19.8  76.4  28.7  60.5  16.0  21.8  90.7  96.7  48.6  23.3 
S [–] <0.1**  <0.1**  11.3  <0.1**  <0.1**  0.5**  64.3  18.3  32.1 40.1  <0.1**  15.6  93.4  52.7  39.1  <0.1**  55.6  95.2  60.3  73.0 
P [mm/s] 100  60.7  16.5  88.0  30.3  94.1  33.3  70.9  89.6 92.6  17.0  75.9  76.4  39.3  52.2  15.3  73.4  51.5  76.9  41.1 
R [mm/s] 100  56.0  1.2*  48.4  90.6  74.9  11.5  66.0  73.5 83.5  47.0  39.8  91.1  40.3  20.4  51.4  83.4  51.1  58.9  31.7 
L⋅F [mm] <0.1**  <0.1**  28.7  20.8  80.1  17.9  22.7  18.3  42.6 38.9  68.5  84.2  63.3  1.5*  79.3  84.1  35.8  91.8  20.2  93.0 
L⋅T [mm∙◦C] 100  1.8**  53.5  2.0*  58.2  19.4  5.5  22.6  81.4 98.2  62.1  92.5  60.6  67.6  23.9  34.9  33.1  78.3  35.7  28.6 
L⋅S [mm] 0.3**  <0.1**  29.8  25.3  0.1**  0.3**  20.4  1.6*  23.7 28.2  <0.1**  4.6*  21.8  42.8  29.4  <0.1**  2.7*  35.1  9.5  62.3 
L⋅P [mm2/s] 100  92.4  21.1  1.7*  16.5  45.1  32.2  25.0  37.0 50.7  16.6  60.9  99.5  63.6  52.3  10.0  52.1  72.3  81.6  62.9 
L⋅R [mm2/s] 100  45.8  17.2  32.4  80.1  64.1  2.7*  7.5  8.6 96.3  30.0  73.7  92.4  46.9  29.8  42.7  42.3  76.0  66.9  21.8 
F⋅T [◦C] 100  12.9  79.5  43.4  6.0  15.3  78.4  18.3  77.4 22.1  8.8  98.4  56.6  33.0  17.8  7.2  71.6  40.7  2.6*  25.0 
F⋅S [–] <0.1**  0.9**  6.1  78.0  1.0**  16.6  15.1  16.5  9.4 36.5  57.5  49.9  31.5  61.7  11.4  75.1  35.7  19.9  80.3  19.0 
F⋅P [mm/s] 100  53.8  41.2  91.4  85.3  74.9  99.0  44.1  29.8 42.6  15.6  96.2  27.9  73.3  52.6  12.1  40.6  14.8  33.8  94.5 
F⋅R [mm/s] 100  33.7  11.3  10.4  65.2  22.6  71.2  3.3*  37.0 100  79.5  31.1  98.1  59.8  91.9  78.7  84.9  85.0  30.5  72.7 
T⋅S [◦C] 100  49.9  62.2  94.9  47.6  22.6  74.8  2.6*  10.3 3.5*  22.9  60.7  97.2  64.7  88.4  23.4  83.3  77.6  46.2  91.0 
T⋅P [◦C∙mm/s] 100  49.2  64.1  62.3  58.2  78.6  95.2  61.2  77.4 41.3  96.8  94.1  78.4  90.6  66.6  97.5  48.4  88.2  19.9  62.9 
T⋅R [◦C∙mm/s] 100  82.1  23.7  28.7  47.6  78.6  1.5**  70.9  32.1 53.6  12.5  90.4  15.5  5.2  1.8*  6.9  72.1  12.2  78.3  1.6* 
S⋅P [mm/s] 100  81.5  25.6  4.3*  2.8*  13.1  69.4  8.4  3.5* 13.3  22.2  41.5  43.1  43.8  10.4  4.6*  86.3  60.8  31.7  23.9 
S⋅R [mm/s] 100  70.1  35.8  0.4**  36.6  64.1  24.4  20.4  97.9 22.9  29.1  21.5  70.6  34.1  48.5  23.0  21.8  76.8  14.5  28.3 
P⋅R [mm2/s2] 100  67.6  11.3  7.3  96.0  71.2  35.6  61.2  42.6 59.7  57.3  21.2  69.5  44.1  65.0  55.0  24.5  64.7  7.9  68.4 
R-Sq [%] 99.99  99.92  84.14  93.27  93.40  83.77  80.21  92.49  88.04 68.09  97.57  90.79  92.07  85.90  77.83  97.53  75.85  85.81  75.31  71.70 
R-Sq adj [%] 99.96  99.75  50.84  79.13  79.55  49.69  38.64  76.73  62.93 1.09  92.48  71.43  75.41  56.29  31.27  92.35  25.14  56.00  23.47  12.27  
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Table A3 
Regression models obtained after stepwise regression.  

Response Regression equation 

PT [min] PT = 161.757 − 378.03L + 135.23F + 3.796S − 118.0L⋅F + 0.31L⋅S − 16.13F⋅S  
EC [kWh] EC = 6.01 − 4.0L − 5.5F + 0.0635T + 1.545S − 65.84L⋅F − 0.2501L⋅T − 3.409L⋅S + 0.1867F⋅T − 2.710F⋅S  
DA1 [mm] DA1 = 11.02 + 1.56L − 0.0995S + 0.0249P + 0.0839R − 0.0482L⋅R + 0.471F⋅S − 0.0152F⋅R − 0.000542P⋅R  
DA2 [mm] DA2 = 14.494 + 5.97L − 1.75F − 0.273S − 2.68L⋅F − 0.00101L⋅T − 0.0412L⋅P + 0.0504F⋅R + 0.00339S⋅P − 0.00655S⋅R + 0.000035P⋅R  
DA3 [mm] DA3 = 19.002 − 1.34L − 1.19F + 0.357S + 0.859L⋅S + 0.0031L⋅P + 0.0159F⋅T − 0.763F⋅S − 0.00199S⋅P  
DA4 [mm] DA4 = 13.8003 − 4.15L + 0.598S − 2.62L⋅F + 0.0178L⋅T + 0.510L⋅S + 0.00827F⋅T − 0.256F⋅S − 0.01198F⋅R − 0.00265T⋅S − 0.000444S⋅P  
DA5 [mm] DA5 = − 3.43 + 0.0572T + 0.3108R + 0.18L⋅F + 0.02364L⋅T + 0.114L⋅S − 0.1059L⋅R − 0.023F⋅S − 0.001328T⋅R  
DA6 [mm] DA6 = 24.901 − 0.942L + 1.821F − 0.00353T + 0.254L⋅S + 0.02236L⋅R − 0.0419F⋅R + 0.000121T⋅S − 0.000445S⋅P  
DA7 [mm] DA7 = 25.127 + 0.577L − 0.959F − 0.00466T + 0.00298L⋅R + 0.273F⋅S + 0.000391T⋅S − 0.000697S⋅P  
DA8 [mm] DA8 = 13.7397 − 0.375L − 0.00029F⋅T − 0.000140T⋅S + 0.00060S⋅P − 0.00070S⋅R  
Ra1 [µm] Ra1 = − 73.8 + 237L + 0.213T + 42.4S + 0.351P + 70.6L⋅S − 1.45L⋅P − 0.373F⋅T + 0.51F⋅P − 0.157T⋅S − 0.000398T⋅R − 0.1198S⋅P  
Ra2 [µm] Ra2 = 3.59 + 87.2L + 0.68S − 14.54L⋅S + 0.0289S⋅R − 0.000601P⋅R  
Ra3 [µm] Ra3 = 162.0 − 192.8L − 0.248T + 3.20L⋅S + 2.6F⋅S − 0.098F⋅P − 0.000183T⋅R  
Ra4 [µm] Ra4 = 6.91 + 60.9L + 28.6F − 226.8L⋅F − 0.000266T⋅R  
Ra5 [µm] Ra5 = 123.1 − 292L − 0.437T + 1.49L⋅T − 0.154F⋅T + 18.1F⋅S − 0.000667T⋅R − 0.0100S⋅P  
RSm1 [mm] RSm1 = − 0.513 + 3.05L + 0.245S + 0.00593P + 0.797L⋅S − 0.0194L⋅P − 0.00787F⋅T + 0.0104F⋅P − 0.000005T⋅R − 0.00231S⋅P  
RSm2 [mm] RSm2 = 0.6546 + 0.209L + 0.338F − 0.2849L⋅S + 0.001029S⋅R − 0.000011P⋅R  
RSm3 [mm] RSm3 = 1.026 − 1.201L + 0.0678F⋅S − 0.00123F⋅P − 0.000007T⋅R  
RSm4 [mm] RSm4 = 0.691 − 6.85F + 0.14L⋅F + 0.005L⋅S + 0.0340F⋅T − 0.000005T⋅P + 0.000182S⋅R − 0.000005P⋅R  
RSm5 [mm] RSm5 = 0.714 − 1.095L + 0.0256L⋅R + 0.0807F⋅S − 0.000035T⋅R   

EC [kWh] 
Skewness test: p-value=0.53, Kurtosis test: p-value=0.06, Shapiro-
Wilk test: p-value= 0.39. 1 outlier detected (test no. 2). 

Ra5 [μm] 
Skewness test: p-value=0.95, Kurtosis test: p-value=0.17, Shapiro-Wilk 
test: p-value= 0.41. No outliers detected. 

RSm5 [mm] 
Skewness test: p-value=0.96, Kurtosis test: p-value=0.44, Shapiro-
Wilk test: p-value= 0.53. No outliers detected. 

PT [min] 
Skewness test: p-value=0.95, Kurtosis test: p-value=0.53, Shapiro-Wilk 
test: p-value= 0.59. No outliers detected. 

Fig. A1. Normal Q-Q plots and normality tests results (α = 0.05) on externally studentized residuals for the responses PT, EC, Ra5 and RSm5.  
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Table A4 
p-value [%] table resulting from ANOVA after the stepwise regression (Alpha-to-Enter = Alpha-to-Remove = 15%) including four central points. Quadratic effect means L⋅L alias F⋅F alias T⋅T alias S⋅S alias P⋅P alias R⋅R.   

PT 
[min] 

EC 
[kWh] 

DA1 
[mm] 

DA2 
[mm] 

DA3 
[mm] 

DA4 
[mm] 

DA5 
[mm] 

DA6 
[mm] 

DA7 
[mm] 

DA8 
[mm] 

Ra1 
[µm] 

Ra2 
[µm] 

Ra3 
[µm] 

Ra4 
[µm] 

Ra5 
[µm] 

RSm1 
[mm] 

RSm2 
[mm] 

RSm3 
[mm] 

RSm4 
[mm] 

RSm5 
[mm] 

L [mm]  <0.1**  <0.1**  <0.1**  0.4**  <0.1**  0.1**   <0.1**  <0.1**  8.9  <0.1**  <0.1**  <0.1**  <0.1**  0.7**  <0.1**  <0.1**  <0.1**   8.8 
F [%]  <0.1**  <0.1**    0.2**    0.8**  1.1*      0.1**    0.6**   3.0*  
T [◦C]   <0.1**      1.1*  1.9*  1.6*   9.5   9.6   11.7  11.3     
S [–]  <0.1**  <0.1**  4.7*  <0.1**  <0.1**  <0.1**      <0.1**  5.1     <0.1**     
P [mm/s]    8.3         7.5      6.5     
R [mm/s]    0.1**     4.1              
Quadratic effect  <0.1**  <0.1**   <0.1**        <0.1**    <0.1**   <0.1**     
L⋅F [mm]  <0.1**  <0.1**     4.8*  12.1        0.1**      10.3  
L⋅T [mm∙◦C]   0.1**   10.1   5.6  1.2*              
L⋅S [mm]  <0.1**  <0.1**    <0.1**  <0.1**  10.2  1.4*   15.0  <0.1**  0.6**  5.4    <0.1**  0.2**   3.1*  
L⋅P [mm2/s]    12.0  9.1  6.4       7.2      3.3*     
L⋅R [mm2/s]    8.9     0.3**  8.3  6.0            14.0 
F⋅T [◦C]   3.8*    1.1*  3.5     10.1  2.6*     13.5  1.9*    0.3**  
F⋅S [–]  <0.1**  <0.1**  1.7*   <0.1**  4.1  6.3   6.7     11.7   7.6    5.4   
F⋅P [mm/s]            6.5   9.0    4.5*   2.9*   
F⋅R [mm/s]    4.7    7.4   3.3*             
T⋅S [◦C]       7.4   2.5*  7.4  0.4**  11.9      12.6     
T⋅P [◦C∙mm/s]                    10.0  
T⋅R [◦C∙mm/s]    14.3     0.1**     4.5   2.6*  0.8**  0.5**  1.8*   2.0*   0.4** 
S⋅P [mm/s]      0.3**  2.6*   9.3  1.8*  4.2  11.3     6.7  0.9**     
S⋅R [mm/s]     3.0*    13.5    10.7   9.0     12.3  10.1   6.1  
P⋅R [mm2/s2]    4.7*          8.7      12.3   2.3*  
R-Sq [%]  99.97  99.89  72.94  61.79  89.41  80.53  67.77  76.72  71.25  46.85  96.68  84.57  90.18  76.92  50.31  96.73  58.05  79.57  53.35  31.90 
R-Sq adj [%]  99.96  99.84  62.11  52.88  86.27  72.75  56.62  69.82  64.06  35.85  94.95  82.00  88.14  73.07  40.03  94.79  51.06  76.93  45.44  25.52  
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Appendix B. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.cie.2021.107238. 
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