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Abstract
Aggregating the preferences of a group of experts is a recurring problem in several fields, including engineering design; in 
a nutshell, each expert formulates an ordinal ranking of a set of alternatives and the resulting rankings should be aggregated 
into a collective one. Many aggregation models have been proposed in the literature, showing strengths and weaknesses, 
in line with the implications of Arrow’s impossibility theorem. Furthermore, the coherence of the collective ranking with 
respect to the expert rankings may change depending on: (i) the expert rankings themselves and (ii) the aggregation model 
adopted. This paper assesses this coherence for a variety of aggregation models, through a recent test based on the Kend-
all’s coefficient of concordance (W), and studies the characteristics of those models that are most likely to achieve higher 
coherence. Interestingly, the so-called Borda count model often provides best coherence, with some exceptions in the case 
of collective rankings with ties. The description is supported by practical examples.

Keywords Engineering design · Expert group · Multiple ordinal rankings · Collective decision-making · Borda count · 
Kendall’s coefficient of concordance (W) · Degree of concordance

1 Introduction

A problem that is common to a number of fields, including 
engineering design, is that of aggregating multiple ordinal 
rankings of a set of alternatives into a collective ranking. 
This problem may concern the early-design stage, in which 
m experts (or decision-making agents: D1 to Dm) formulate 
their individual rankings of n design alternatives (or objects: 
O1 to On) (Fu et al. 2010; Frey et al. 2009; Hoyle and Chen 
2011; Keeney 2009). In the simplest case, these rankings 
are complete, i.e.:

 (i) each expert is able to rank all the alternatives of inter-
est, without omitting any of them;

 (ii) each ranking can be decomposed into paired-compar-
ison relationships of strict preference (e.g., O1 ≻ O2 
or O1 ≺ O2) and/or indifference (e.g., O1 ~ O2).

The objective of the problem is to aggregate the expert 
ordinal rankings into a collective one, which is supposed 
to reflect them as much as possible, even in the presence of 
diverging preferences (Weingart et al. 2005; See and Lewis 
2006). For this reason, the collective ranking is often defined 
as social, consensus or compromise ranking (Cook 2006; 
Herrera-Viedma et al. 2014; Franceschini et al. 2015, 2016).

Returning to the context of the early-design stage, design 
alternatives are often not very well defined and there are 
doubts about how) to prioritize them (Weingart 2005; 
Kaldate et al. 2006; McComb et al. 2017. Although there is 
a substantial agreement on the design criteria, the selection 
of design alternatives is generally driven by the different 
personal experience of designers (Dwarakanath and Wallace 
1995). Thus arises the need to aggregate preference rankings 
of design alternatives that reflect the opinions of individual 
experts, using appropriate aggregation models (Fishburn 
1973b; Franssen 2005; Cook 2006; Hazelrigg 1999; Frey 
et al. 2010; Katsikopoulos 2009; Ladha et al. 2003; Reich 
2010; Nurmi 2012).
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Alongside this, a passionate debate on the effects of the 
Arrow’s impossibility theorem in engineering design is still 
going on (Arrow 2012; Reich 2010; Hazelrigg 1996, 1999, 
2010; Scott and Antonsson 1999; Franssen 2005; Yeo et al. 
2004; McComb et al. 2017). In short, this theorem estab-
lishes the impossibility of a generic aggregation model to 
provide a collective ranking that always satisfies several 
desirable properties, also known as fairness criteria, i.e., 
unrestricted domain, non-dictatorship, independence of 
irrelevant alternatives (IIA), weak monotonicity, and Pareto 
efficiency (Arrow 2012; Fishburn 1973a; Nisan et al. 2007; 
Saari 2011; Saari and Sieberg 2004; Franssen 2005; Jacobs 
et al. 2014).

For a given set of m expert rankings concerning n alter-
natives, different aggregation models may obviously lead 
to different collective rankings (Saari 2011; McComb et al. 
2017). Identifying the model that best reflects the m rank-
ings is not easy, also because it may change from case to 
case. Some researchers showed the effectiveness of specific 
aggregation models, even though they cannot always satisfy 
all of the Arrow’s fairness criteria (Dym, Wood and Scott 
2002). Yet, the Arrow’s theorem does not close the doors to 
the possibility of comparing different aggregation models, 
identifying the best one(s) on the basis of certain tests. For 
example, several authors attempted to measure the coher-
ence (or consistency) between the expert rankings and the 
collective one (Chiclana 2002; Franceschini and Maisano 
2015, 2017; Franceschini and Garcia-Lapresta 2019). Other 
authors hypothesized a relationship between the so-called 
implicit agreement of the expert rankings and the Arrow’s 
fairness (McComb et al. 2017). Moreover, Katsikopoulos 
(2009) expressed the need for greater clarity in the discus-
sion ofengineering design methods to support decision 
making.

In general, the choice of the best aggregation model may 
depend on: (1) the specific objective(s) of the expert group 
and/or (2) the rationale of the test used (Dong et al. 2004; 
Li et al. 2007; Paulus et al. 2011; Cagan and Vogel 2012; 
Franceschini et al. 2019; Franceschini and Maisano 2019b).

The aim of this article is to make a comparison between 
four relatively popular aggregation models—i.e., the so-
called Best of the best, Best two, Best three, and Borda count 
model—trying to answer the research question: “Which is 
the model producing the collective ranking that best reflects 
the expert rankings?”. The comparison will be performed by 
measuring the coherence of the models, through a recent test 
based on the so-called Kendall’s coefficient of concordance 
(W) (Kendall 1962; Legendre 2010). This test quantitatively 
evaluates the coherence of the collective ranking provided 
by any aggregation model, for a specific ranking-aggregation 
problem.

A previous research (Franceschini and Maisano 2019a) 
illustrated the test in general terms, regardless of the 

characteristics of the specific aggregation models. This 
work significantly extends the previous one, investigating the 
characteristics of the aggregation models that are most likely 
to achieve higher coherence, according to the above test. 
The new investigation generalizes earlier results, including a 
mathematical optimization of a specific coherence indicator. 
Thanks to the outcomes of this study, the engineering-design 
management will have extra support for choosing the most 
“promising” aggregation models.

The remainder of this article is organized into three sec-
tions. Section 2 illustrates a case study that will accompany 
the description of the proposed methodology. Section 3 is 
divided into two parts: the first part formalizes the concept 
of coherence of the collective ranking with respect to the 
expert rankings, recalling the coherence test proposed in 
(Franceschini and Maisano 2019a); the second part analyzes 
the test itself thoroughly, showing its close link with the 
Borda count model. Section 4 provides a discussion of the 
practical implications and limitations of this research for 
the engineering-design field, summarizing original contribu-
tions and suggestions for future research. Further details are 
contained in the Appendix section.

2  Case study

This section contains an application example that will be 
used to illustrate the proposed methodology. An important 
hi-tech company—which is kept anonymous for reasons of 
confidentiality—operates predominantly in the sector of 
video projectors. Recent advances in imaging technology 
have led the company to increasingly invest in the develop-
ment of hand-held projectors, also known as a pocket projec-
tors, mobile projectors, pico-projectors or mini beamers (see 
Fig. 1) (Borisov et al. 2018).

Fig. 1  Example of pocket projector, i.e., small hardware device 
designed to project content from a smartphone, camera, tablet, note-
book or memory device onto a wall or other flat surface
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Four design concepts of pocket projectors (O1 to O4, i.e., 
objects) have been generated by a team of ten engineering 
designers (i.e., the experts of the problem: D1 to D10), dur-
ing the conceptual design phase (see also the description in 
Fig. 2):

• (O1) stand-alone projector;
• (O2) USB projector;
• (O3) media-player projector;
• (O4) embedded-type projector.

The objective is to evaluate the aforementioned design 
concepts in terms of user friendliness, i.e., a measure of the 
ease of use of a pocket projector. Some of the factors that can 
positively influence this attribute are: (i) quick set-up time, 
(ii) intuitive controls, and (iii) good user interface.

Given the great difficulty in bringing together all the 
experts and making them interact to reach shared decisions, 
management leaned towards a different solution: a collec-
tive ranking of the four design concepts can be obtained 
by merging the individual rankings formulated by the ten 
engineering designers (Table 1 shows these rankings).

Before focusing on the possible aggregation models, 
let us take a step back dealing with the evaluation of the 
experts’ degree of concordance (Franceschini and Maisano 
2019a). The scientific literature includes an important indi-
cator to evaluate the overall association for more than two 
rankings, i.e., the so-called Kendall’s coefficient of concord-
ance, which is defined as (Kendall and Smith, 1939; Kendall 
1962; Fishburn 1973b; Legendre 2005, 2010):

where: Ri =
∑m

j=1
rij is the sum of the rank positions 

for the i-th object, rij  being the rank position of the 
object  Oi according to the j-th expert; n  is the total 

(1)W (m) =
12(

∑n

i=1
R2

i
) − 3m2n(n + 1)2

m2n
�

n2 − 1
�

− m(
∑m

j=1
Tj)

,

number of objects; m is the total number of ordinal rank-
ings; Tj =

∑gj

i=1

�

t3
i
− ti

�

,∀j = 1,… ,m , being ti the number 
of objects in the i-th group of ties (a group is a set of tied 
objects), and gj is the number of groups of ties in the rank-
ing by the j-th expert. If there are no ties in the j-th ranking, 
then Tj = 0.

Regarding the rank positions (rij) of the tied objects, a 
convention is adopted whereby they should be the average 
rank positions that each set of tied objects would occupy if 
a strict dominance relationship could be expressed (Gibbons 
and Chakraborti 2010). This convention guarantees that—
for a certain j-th ranking and regardless of the presence of 
ties—the sum of the objects’ rank positions is an invariant 
equal to:

In terms of range, W (m) ∈ [0,1] . W (m) = 0 indicates the 
absence of concordance, while W (m) = 1 indicates the com-
plete concordance (or unanimity). The superscript “(m)” 

(2)
n
∑

i=1

rij =
n ⋅ (n + 1)

2
.

Fig. 2  Schematic representation and short description of four alternative design concepts of pocket projectors

Table 1  Ordinal rankings of four design concepts (i.e., O1 to O4) for-
mulated by ten engineering designers (i.e., D1 to D10)

Engineering designer Ranking

D1 O
1
≻ O

2
≻ O

3
≻ O

4

D2 O
1
≻ O

2
≻ O

3
≻ O

4

D3 O
1
≻ O

3
≻ O

4
≻ O

2

D4 O
1
≻ O

4
≻ O

3
≻ O

2

D5 O
1
≻ O

4
≻ O

3
≻ O

2

D6 O
3
≻ O

2
≻ O

4
≻ O

1

D7 O
3
≻ O

2
≻ O

4
≻ O

1

D8 O
4
≻ O

2
≻ O

3
≻ O

1

D9 O
4
≻ O

2
≻ O

3
≻ O

1

D10 O
4
≻ O

2
≻ O

3
≻ O

1
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was added by the authors to underline that the coefficient of 
concordance is applied to the m expert rankings and to dis-
tinguish it from another indicator—referred to as W(m+1)—
which will be applied to m + 1 rankings.

Returning to the problem in Table 1, which does not 
include any ranking with ties (i.e., Tj = 0 ), the formula in 
Eq. 1 can be applied, obtaining W (m) = 0.004 = 0.4% . This 
result denotes a relatively low degree of concordance among 
experts.

Table 2 shows the calculation of the rank positions (rij) 
of the four objects, for each of the ten expert rankings in 
Table 1.

Inspired by different design strategies, the team of engi-
neering designers decides to consider four popular aggre-
gation models from the scientific literature (Saari 2011; 
McComb et al. 2017; Franceschini and Maisano 2019a). A 
brief description of these models follows:

 (i) Best of the best model (BoB or standard plural-
ity vote). For each ranking, the most preferred 
design concept obtains one point. According to the 
data in Table 2, the resulting collective ranking is 
O1 ≻ O4 ∼ O3 ≻ O2 and the “winning” design con-
cept is O1. Table 3(i) contains the intermediate cal-
culations.

   For example, this model is used to designate the 
winner of important competitions, such as the “Red 
Dot Award”, awarded by eminent design associa-
tions/centres to the best design concept of the year 
(see https ://www.red-dot.org, last accessed on Sep-
tember 2020).

 (ii) Best two model (BTW or vote for two). For each rank-
ing, the two most preferred design concepts obtain 
one point each. According to the data in Table 1, the 
resulting collective ranking is O1 ≻ O4 ≻ O3 ≻ O2 

and the “winning” design concept is O2. Table 3(ii) 
contains the intermediate calculations.

   For example, this model is used for municipal elec-
tions of City Commissioner in some major U.S. cities 
(Boyd and Markman 1983).

 (iii) Best three model (BTH or vote for three). For each 
ranking, the three most preferred design concepts 
obtain one point each (i.e., this is equivalent to 
neglecting the worst design concept). The resulting 
collective ranking is O3 ≻ O4 ≻ O2 ≻ O1 and the 
“winning” design concept is O3. Table 3(iii) contains 
the intermediate calculations. Whilst this model is 
less common than the above models, it is occasion-
ally used for municipal elections in several city coun-
cils (Stark 2008).

 (iv) Borda count model (BC).For each expert ranking, 
the first design concept accumulates one point, the 
second two points, and so on (Borda 1781). Accord-
ing to this model, the cumulative scores of the four 
design concepts are calculated as:

being BC(O1) , BC(O2) , BC(O3) and BC(O4) the so-called 
Borda counts related to the four design concepts. Of course, 
the degree of preference of an i-th design concept decreases 
as the corresponding BC(Oi) increases. In this specific case, 
the collective ranking is O4 ≻ O1 ∼ O3 ≻ O2 and the most 
preferred alternative is O4.

In addition to being used for engineering design (Dym 
et al. 2002; McComb et al. 2017), it is also used for: (1) 
political elections in several countries, (2) internal elec-
tions in some professional and technical societies (e.g., 
board of governors in the International Society for Cryobi-
ology, board of directors in the X.Org Foundation, research 
area committees in the U.S. Wheat and Barley Scab Initia-
tive, etc.), and (3) a variety of other contexts (e.g., world 

(3)

BC(O1) = 1 + 1 + 1 + 1 + 1 + 4 + 4 + 4 + 4 + 4 = 25

BC(O2) = 2 + 2 + 4 + 4 + 4 + 2 + 2 + 2 + 2 + 2 = 26

BC(O3) = 3 + 3 + 2 + 3 + 3 + 1 + 1 + 3 + 3 + 3 = 25

BC(O4) = 4 + 4 + 3 + 2 + 2 + 3 + 3 + 1 + 1 + 1 = 24

Table 2  Ranks positions (rij) for the four design concepts (O1, O2, O3 
and O4), deduced from the expert rankings in Table 1

Engineering designer Rank positions (rij)

O
1

O
2

O
3

O
4

D1 1 2 3 4
D2 1 2 3 4
D3 1 4 2 3
D4 1 4 3 2
D5 1 4 3 2
D6 4 2 1 3
D7 4 2 1 3
D8 4 2 3 1
D9 4 2 3 1
D10 4 2 3 1
Ri =

∑m

j=1
rij 25 26 25 24

Table 3  Scores related to the design concepts (i.e., O1 to O4) and cor-
responding collective ranking, produced by each of the four aggrega-
tion models (i.e., BoB, BTW, BTW and BC)

Aggregation 
model

Scores Collective ranking

O1 O2 O3 O4

(i) BoB 5 0 2 3  → O
1
≻ O

4
≻ O

3
≻ O

2

(ii) BTW 5 7 3 5  → O
2
≻ O

1
∼ O

4
≻ O

3

(iii) BTH 5 7 10 8  → O
3
≻ O

4
≻ O

2
≻ O

1

(iv) BC 25 26 25 24  → O
4
≻ O

1
∼ O

3
≻ O

2

https://www.red-dot.org
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champion of “Public Speaking” contest by Toastmasters 
International, “RoboCup” autonomous robot soccer com-
petition at the University of Bremen in Germany, ranking 
of NCAA college teams, etc.) (Emerson 2013).

Reflecting different design strategies, the four aggregation 
models produce four different collective rankings in this case 
(see overview in Table 3). Even more surprising is that the 
best pocket projector design concept (i.e. the object at the 
top of each collective ranking) is different for each of the 
four aggregation models. Although this plurality of results 
may at first glance confuse the reader, it is in some measure 
justified by the low degree of concordance of the expert 
rankings (i.e., W(m) = 0.004, as seen before). Additionally, 
this plurality of results raises the question: “Which is the 
model producing the collective ranking that best reflects the 
expert rankings?”. To answer this question, a test can be 
used to measure the coherence between (1) the expert rank-
ings and (2) the collective ranking obtained through each 
model.

3  Testing and maximizing the coherence

This section is divided into two parts: the first one recalls 
the concept of coherence and the so-called W(m+1) test, while 
the second one analytically studies the maximization of the 
coherence itself.

3.1  The W(m+1) test

The basic idea of the W (m+1) test, recently proposed by the 
authors (Franceschini and Maisano 2019a), is to analyse 
the level of coherence between the expert rankings and the 
collective ranking resulting from the application of the (k-
th) aggregation model. The test is based on the construc-
tion of an indicator, denominated W (m+1)

k
 , which is nothing 

more than the Kendall’s concordance coefficient (see Eq. 1), 
applied to the (m + 1) rankings consisting of:

• The m expert rankings, involved in a engineering-design 
decision problem;

• The collective ranking obtained by applying the (k-th) 
aggregation model to the previous m rankings. The 
collective ranking is actually treated as an additional 
(m + 1)-th ranking.

The formula of the indicator W (m+1)

k
 follows:

(4)

W
(m+1)

k
=

12

�

∑n

i=1

�

Ri + ri
�2
�

− 3(m + 1)2n(n + 1)2

(m + 1)2n
�

n2 − 1
�

− (m + 1)(
∑m

j=1
Tj) − (m + 1)Tm+1

,

where ri is the rank position of the i-th object in the collec-
tive ranking; obviously ri ∈ [1, n] . In case of tied objects, the 
same convention described in Sect. 2 is adopted.

Going back to the case study, the indicator W (m+1)

k
 can 

be determined by applying the formula in Eq. (4) to the ten 
rankings in Table 1 plus the collective ranking resulting 
from the application of each aggregation model. Table 4 
reports the resulting W (m+1)

k
 values; subscript "k" denotes 

a generic aggregation model, k: BoB, BTW, BTH, BC. For 
this specific problem, the BC model is the one with the high-
est coherence ( W (m+1)

BC
≈ 2.00%).

In this specific case, the condition W (m+1)

k
≥ W (m) holds 

for each k-th aggregation model, depicting a certain coher-
ence (or positive coherence) between the corresponding 
collective ranking and the m rankings. An opposite result 
(i.e., W (m+1)

k
< W

(m)
 ) would depict incoherence (or nega-

tive coherence). Even though the latter situation is in some 
ways paradoxical, it can occur when a collective ranking is 
somehow conflicting with the m rankings (Franceschini and 
Maisano 2019a).

To quantitatively measure the degree of coherence of an 
aggregation model, the following synthetic indicator can be 
used (Franceschini and Maisano 2019a):

For a given set of alternative aggregation models, the 
most coherent can be considered the one that maximizes 
b
(m)

k
 ; in formal terms, the model for which:

The last column of Table 4 reports the b(m)
k

 values related 
to the four aggregation models of interest. It is worth notic-
ing that this indicator allows a quick and practical quantita-
tive comparison.

3.2  Maximization of b(m)

k

Let us now focus on the synthetic indicator b(m)
k

 . Replacing 
Eqs. (1) and (4) into Eq. (5), b(m)

k
 can be expressed as:

(5)b
(m)

k
=

W
(m+1)

k

W (m)
.

(6)b(m)
∗

= max
k

[

b
(m)

k

]

.

Table 4  W(m), W (m+1)

k
 and b(m)

k
 values related to the m rankings in 

Table1, when applying the four different aggregation models (k: BoB, 
BTW, BTW, BC)

Aggregation 
model (k)

Collective ranking W (m)
W

(m+1)

k
b
(m)

k

(i) BoB O
1
≻ O

4
≻ O

3
≻ O

2
0.4% 1.82% 4.55

(ii) BTW O
2
≻ O

1
∼ O

4
≻ O

3
idem 0.58% 1.45

(iii) BTH O
3
≻ O

4
≻ O

2
≻ O

1
idem 1.48% 3.70

(iv) BC O
4
≻ O

1
∼ O

3
≻ O

2
idem 2.00% 5.00
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The previous expression is deliberately general, as it con-
templates the possibility of:

• ties—i.e., relationships of indifference (“ ~ ”) and not 
only of strict preference (“≻” or “≺”)—among the 
objects within the m-expert rankings;

• ties among the objects within the collective ranking, or 
(m + 1)-th ranking.

By grouping some terms, Eq. (7) can be reformulated in 
a more compact form as follows:

It can be seen that the indicator b(m)
k

 includes four types 
of contributions:

 (i) N1 = 12
�
∑n

i=1
R2

i

�

− 3(m + 1)2n(n + 1)2  a n d 
D1 = W (m)

�

(m + 1)2n
�

n2 − 1
�

− (m + 1)(
∑m

j=1
Tj)

�

 , 
concerning the m rankings (and therefore the rij and 
Ri values, also known as experts’ preference profile) 
and the parameters related to the “size” of the prob-
lem (i.e., n and m);

 (ii) 24
�
∑n

i=1

�

Riri
��

 , concerning a mixture of the experts’ 
preference profile (through the Ri values) and the 
ranks of the collective ranking (through the ri val-
ues);

 (iii) 12
�
∑n

i=1
r2
i

�

 , concerning the ri values of the collective 
ranking;

 (iv) W (m)(m + 1)Tm+1 , concerning a mixture of the 
experts’ preference profile (through W (m)(m + 1) ) 
and the Tm+1 value related to the collective ranking.

Note that the first contribution (i) is not related to the 
results of the collective ranking. Instead, the remaining three 
contributions—(ii), (iii) and (iv)—are all related to the col-
lective ranking. In line with the research question behind 
this study, let us try to identify the aggregation model that 
produces the most coherent collective ranking, through the 
maximization of b(m)

k
 , operating on the three terms concern-

ing the aggregation model: (ii) 
∑n

i=1

�

Riri
�

 , (iii) 
∑n

i=1
r2
i
 and 

(iv) Tm+1.
Additionally, note that the analytic maximization of Eq. 

(8) as a function of the ri values is relatively complex for 
two reasons: (i) the ri values are variables defined on a dis-
crete domain; (ii) the ri values are explicit in some terms 
(i.e., 24

�
∑n

i=1

�

Riri
��

 and 12
�
∑n

i=1
r2
i

�

 ) and implicit in others 

(7)b
(m)

k
=

W
(m+1)

k

W (m)
=

12

�

∑n

i=1 (Ri+ri)
2
�

−3(m+1)2n(n+1)2

(m+1)2n(n2−1)−(m+1)(
∑m

j=1
Tj)−(m+1)Tm+1

12(
∑n

i=1
R2

i
)−3m2n(n+1)2

m2n(n2−1)−m(
∑m

j=1
Tj)

(8)b
(m)

k
=

N1 + 24
�
∑n

i=1

�

Riri
��

+ 12
�
∑n

i=1
r2
i

�

D1 −W (m)(m + 1)Tm+1

(i.e., W (m)(m + 1)Tm+1 , where possible ties in the ri collective 
ranks affect the Tm+1 term).

In the following subsections, the major terms of Eq. (8) 
will be analysed separately, although they are closely related. 
A more rigorous, though laborious, alternative could be 
performing numerical maximization through Monte Carlo 
simulations.

3.2.1  Analysis of 
∑n

i=1

�

R
i
r
i

�

This term can be interpreted as a scalar product between 
two vectors: R = (R1, …, Rn) and r = (r1, …, rn). In general, 
the scalar product of two vectors (r and R) with predeter-
mined modules is maximized if these vectors are com-
pletely aligned, i.e., when direct proportionality between 
the relevant components occurs: ri ∝ Ri. With reference to 
the problem of interest, this perfect alignment can hardly 
be achieved in practice, due to the fact that the ri compo-
nents are rank positions ∈ [1, n], with constant sum equal to 
n⋅(n + 1)/2. Compatibly with the previous constraint, it can 
be demonstrated that the Borda model provides a collective 
ranking that maximises the term 

∑n

i=1

�

Riri
�

 (see the proof 
in Appendix A.1).

3.2.2  Analysis of 
∑n

i=1
r
2

i
= �r�

2

We note that this term corresponds to the squared module of 
the collective-rank vector r = (r1, …, rn). It can be demon-
strated that r has the maximum-possible module when its 
components are a permutation of natural numbers included 
between 1 and n, in the absence of ties (see the proof in 
Appendix A.2). Precisely, the maximum-possible value of 
the term of interest is n⋅(n + 1)⋅(2⋅n + 1)/6 (Gibbons and 
Chakraborti 2010). If there is a tie, however, this term tends 
to decrease. The most disadvantageous case would be the 
one with an overall tie of all the alternatives (i.e., r1= r2= … 
= rn= n+1

2
 ), with a consequent value of the term of 

(

n+1

2

)2

⋅ n ; 
therefore:

3.2.3  Analysis of T
m+1

This term is maximized in the case of an all-all tie of all the 
alternatives in the collective ranking, i.e., r1= r2= …= rn, 
with the value of n3 – n (see Sect. 2). In the case of no ties, 
it is obviously equal to zero. Therefore, the range of Tm+1 is:

(9)
n
∑

i=1

r2
i
∈

[

(

n + 1

2

)2

⋅ n,
n ⋅ (n + 1) ⋅ (2 ⋅ n + 1)

6

]

.

(10)Tm+1 ∈
[

0, n3 − n
]
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3.3  Close link between b(m)

k
 and the Borda count 

model

In light of the previous analyses, it is possible to outline 
two potential situations, as described in the following 
subsections.

3.3.1  Absence of ties in the collective ranking

In the absence of ties in the collective ranking, the two 
terms 

∑n

i=1
r2
i
 and Tm+1 become constants, i.e., respectively: 

∑n

i=1
r2
i
=

n⋅(n+1)⋅(2⋅n+1)

6
 and Tm+1 = 0. It can be proven that 

the BC model is the one maximizing the term 
∑n

i=1

�

Riri
�

 
(see demonstration in Appendix A.1); given the constancy 
of the aforementioned two other terms, the BC model will 
also maximize b(m)

k
 in this situation.

To better focalize this result, it may be appropriate to con-
sider the general expression of W (m) (in Eq. 1) more closely. 
It can be observed that the Ri values (e.g., those reported 
at the bottom of Table 2) are the same as the Borda scores 
assigned to the individual objects of interest (i.e., BC(Oi) , 
∀i = 1,… , n , as exemplified in Eq. 3) (Cook and Seiford 
1982). In this situation, the expression of b(m)

k
 in Eq. (7) can 

be reformulated as:

Pooling the terms that do not depend on the collective 
ranking (i.e., all except for the ri terms), the following com-
pact expression can be obtained:

being a and b two terms that—for a given problem—can 
be treated as constants, as they depend exclusively on n, m, 
Ri = BC(Oi) ( ∀i = 1,… , n ), and Tj ( ∀j = 1,… ,m ). Equa-
tion (12) highlights the close link between the collective 
ranks ( ri ) and the Borda scores related to the m-expert 
rankings: in the absence of ties in the collective rank-
ing, the BC model maximizes the term 

∑n

i=1
[BC(Oi) ⋅ ri] , 

and therefore also b(m)
k

 , determining the maximum align-
ment (or projection) of the two vectors r = (r1, …, rn) and 
BC = [BC(O1), BC(O2), ..BC(On)] (cf. Sect.  3.2.1 and 
Appendix A.1).

(11)b
(m)

k
=

W
(m+1)

k

W (m)
=

12

�

�
∑n

i=1
BC(Oi)

2
�

+2⋅{
∑n

i=1 [BC(Oi)⋅ri]}+
n⋅(n+1)⋅(2⋅n+1)

6

�

−3⋅(m+1)2⋅n⋅(n+1)2

(m+1)2n(n2−1)−(m+1)(
∑m

j=1
Tj)

12⋅
�
∑n

i=1
BC(Oi)

2
�

−3m2n(n+1)2

m2n(n2−1)−m(
∑m

j=1
Tj)

.

(12)b
(m)

k
= a + b ⋅

n
∑

i=1

[BC(Oi) ⋅ ri],

3.3.2  Presence of ties in the collective ranking

The presence of ties in the collective ranking can affect 
the maximisation of b(m)

k
 in a somewhat unpredictable way: 

although it contributes to reduce the term 
∑n

i=1
r2
i
 , it also 

contributes to increase the term (m + 1)Tm+1 (cf. Eq. 8). 
Thus, the overall effect on b(m)

k
 is not simply predictable 

and should be considered on a case-by-case basis; this also 
emerges from the additional asymptotic analysis of b(m)

k
 , con-

tained in Appendix A.4.
Reversing the perspective, in the presence of ties, the 

maximization of 
∑n

i=1
[BC(Oi) ⋅ ri] by the BC model does 

not guarantee the maximization of b(m)
k

 (see the example in 
Appendix A.3).

4  Discussion

Leaving the mathematical issues, this section focuses on (i) 
practical implications and limitations of this research for 
the engineering-design field, and (ii) original contributions 
and ideas for future research. These topics are covered in the 
following two sub-sections respectively.

4.1  Implications and limitations for engineering 
design

In early-design stages, initial decisions often should be made 
when information is incomplete and many goals are contra-
dictory, leading to situations of conflict between (co-)design-
ers. Managing the conflict that emerges from multi-design 
interaction is therefore a critical element of collaborative 
design (Grebici et al. 2006). According to some authors, 
conflict itself is the process through which ideas are vali-
dated and developed: “the engine of design” (Brown 2013).

Considering the problem of interest, the engineering-
design conflict finds its shape in the (discordant) object 
rankings, which are formulated by the individual designers; 
for example, this conflict is quite evident from the m rank-
ings in the case study (see Table 1). The collective ranking 
represents a way to solve this conflict and the aggregation 



98 Research in Engineering Design (2021) 32:91–103

1 3

model therefore represents a sort of conflict-management 
tool. However, the plurality of aggregation models makes 
their selection non-trivial: any aggregation model is by 
definition imperfect and may provide more or less sound 
results, depending on the specific ranking-aggregation prob-
lem (Arrow 2012). In this research, the coherence between 
the collective ranking and the corresponding m rankings was 
considered as a selection criterion; in fact, the indicator b(m)

k
 

allows to identify the most coherent aggregation model(s) 
in different practical situations.

In cases where a certain conflict between collective 
ranking and expert rankings is observed, decision makers 
can deepen the analysis, identifying those expert rankings 
that represent the main sources of incoherence. A possible 
in-depth analysis could be based on the calculation of the 
Spearman’s rank correlation coefficient1 (ρ) between the col-
lective ranking and each of the expert rankings. Intuitively, 
the Spearman correlation between the rankings will be high 
(i.e., tending towards + 1) when objects have a similar rank 
between the two rankings, and low (i.e., tending towards 
−1) when objects have a dissimilar (or even opposed) rank 
between the two rankings. Of course, the rankings that will 
produce the highest incoherence are those with negative ρ 
values.

For the purpose of example, let us return to the case study; 
Table 5 reports the ρ values between the collective ranking 
related to the application of the BC model (in Table 3) and the 
corresponding expert rankings (in Table 1). The expert rank-
ings most in contrast with the collective ranking are those by 
experts e1 and e2 (both with ρ values of − 0.632), followed by 

those by experts e6 and e7 (both with ρ values of − 0.316). It 
could be interesting for the engineering-design management 
to identify the reasons for the misalignment of these experts 
(e.g., different view or poor understanding of some design 
concepts, errors in the ranking formulation, etc.).

Among the jungle of possible aggregation models exist-
ing in the scientific literature, this researcher has considered 
exclusively aggregation models characterised by simplicity 
and easy understanding. It is well known that simple and 
intuitive models are more easily “digested” and implemented 
by management than obscure and complicated ones (Franc-
eschini et al. 2019). To quote a phrase by Leonardo da Vinci, 
“Simplicity is the ultimate sophistication”. In line with that, 
our analysis was limited to four simple, intuitive and popular 
aggregation models, showing that the traditional BC gener-
ally provides very coherent results. The authors believe that 
this is a relevant indication for the engineering-design man-
agement when selecting the most “promising” aggregation 
models for a certain ranking-aggregation problem.

The proposed study has several limitations, summarised 
in the following points:

• Since the present analysis makes extensive use of the 
W(m+1) test, it “inherits” the limitations associated with it, 
i.e., (Franceschini and Maisano 2019a): (i) the test does 
not consider the (possible) uncertainty in expert rank-
ings, and (ii) the test allows only an ex post (i.e., case-
by-case) analysis of the impact of aggregation models.

• The study revealed that the BC model often provides the 
best coherence. Over and above the merits of the BC 
model, this result is also due to the structural charac-
teristics of the W(m+1) test; in fact, being based on the 
Kendall’s coefficient of concordance, this test is some-
how related to the BC model (cf. Section 3.3) (Cook and 
Seiford 1978, 1982). This aspect in some ways limits 
the proposed coherence analysis: measuring coherence 
through another indicator would not necessarily lead to 
the same results. As an example, one could use Cron-
bach’s alpha ( �

Ck ), applied respectively to the ranks 
related to the expert rankings and the collective ranking. 
A new indicator, similar to b(m)

k
 , could then be defined as:

(13)c
(m)

k
=

�
(m+1)

Ck

�
(m)

C

,

Table 5  Spearman’s ρ correlation coefficients with relevant p-values for the BC-model collective ranking (in Table 3) and each of the ten expert 
rankings in Table 1

Expert e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

Spearman’s ρ − 0.632 − 0.632 0.316 0.632 0.632 − 0.316 − 0.316 0.316 0.316 0.316
p-value 0.368 0.368 0.684 0.368 0.368 0.684 0.684 0.684 0.684 0.684

1 This coefficient can be seen as a special case of the Pearson cor-
relation coefficient of two sets of variables (e.g., X and Y), where the 
values of the variables are replaced with rank values (e.g., rX and rY) 
before calculating the coefficient itself (Spearman 1904; Ross 2009; 
Myers et al. 2010):
 � =

∑n

i=1 [rX(Oi)−rX]⋅[rY(Oi)−rY]
√

∑n

i=1 [rX(Oi)−rX]
2
⋅

√

∑n

i=1 [rY(Oi)−rY]
2
,

 where:
 X and Y are subscripts referred to two generic experts (eX and eY), 
who have formulated their respective rankings of n objects (O1, O2, 
…, On);
 rX(Oi) and rY(Oi) are the rank values of the i-th object, formulated by 
eX and eY respectively;

 rX =
∑n

i=1
rX(Oi)
n

 and rY =
∑n

i=1
rY(Oi)
n

 are the mean rank values of the 
objects, considering the rankings formulated by eX and eY.
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  being �(m)

C
 and �(m+1)

Ck
 respectively the Cronbach’s alpha 

related to the m-expert rankings and the (m + 1) rankings, 
when adding the collective ranking obtained through the 
(k-th) aggregation model (cf. Sect. 3.1).

  However, the choice fell on W for many reasons: (i) 
it is specific for judgments expressed in the form of 
rankings and not in other forms, such as on cardinal 
scales (Hammond et al. 2015); (ii) the W-distributional 
properties are well known (Kendall 1962; Gibbons and 
Chakraborti 2010); (iii) it is intuitive and relatively easy 
to implement (Franceschini and Maisano 2019a).

• The proposed analysis considers only complete expert 
rankings, where all objects are ranked through strict 
preference and/or indifference relationships only. Nev-
ertheless, some practical contexts may make it difficult to 
formulate complete rankings, e.g., problems with many 
alternatives, where experts can face practical impediment 
or do not have the concentration to formulate complete 
rankings. In such cases, experts may prefer to formulate 
incomplete rankings, which include the most/least rel-
evant objects only and/or deliberately exclude some other 
objects (Franceschini and Maisano 2019b, 2020).

4.2  Original contributions and ideas for future 
research

This paper analysed the coherence of alternative aggregation 
models, trying to answer the research question: “Which is 
the model producing the collective ranking that best reflects 
the expert rankings?”. The coherence between the m-expert 
rankings and the collective ranking (which is obtained 
through a certain aggregation model) was assessed using 
the W(m+1) test and the corresponding synthetic indicator 
b
(m)

k
 (Franceschini and Maisano 2019a).

It was found that the BC model offers, with some excep-
tions, the best coherence. Precisely, when no ties appear 
among the objects of the collective ranking, it was analyti-
cally shown that the BC model maximizes both the indica-
tors W(m+1) and b(m)

k
 . Admitting ties, instead, the BC model’s 

collective ranking is not necessarily the best one, although 
it is generally close to it (cf. Appendix A.3).

The above result confirms the versatility and practicality 
of the BC model, which—in spite of some inevitable imper-
fections (Dym et al. 2002; Arrow 2012)—remains intuitive, 
easy to implement, computationally light and coherent as 
results.

Regarding the future, we plan to explore in greater depth 
the gap between (i) the collective ranking resulting from the 
BC model and (ii) the one maximizing coherence, based on 
a large number of tests and experimental simulations.
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Appendix

A.1. Rearrangement inequality

The problem of maximizing the term 
∑n

i=1

�

Riri
�

 has already 
been addressed in Mathematics in the form of the so-called 
Rearrangement Inequality (Hardy et al. 1952).

Statement. For every choice of real numbers R1 ≤ ⋯ ≤ Rn 
and r1 ≤ ⋯ ≤ rn , and every permutation rp(1) ≤ ⋯ ≤ rp(n) of 
r1 , …, rn , the following inequality applies:

If the numbers are different, meaning that R1 < ⋯ < Rn 
and r1 < ⋯ < rn , then the lower bound is attained only for 
the permutation which reverses the order, i.e., p(i) = n − i + 1 
for all i = 1, …, n, and the upper bound is attained only for 
the identity, i.e., p(i) = i for all i = 1, …, n.

Proof (by induction). Observe first that the condition

implies

hence the result is true if n = 2. Assuming that it is true at 
the (n – 1)-th rank position, and let

choose a permutation p for which the arrangement gives 
rise a maximal result. If p(n) were different from n, say 
p(n) = k, there would exist j < n such that p(j) = n. But rj > rn 
and Rk > Rn and, hence Rn⋅rn + Rj⋅rk > Rn⋅rk + Rj⋅rn , by 
what has just been proved. Consequently, it would follow 
that the permutation q coinciding with p, except at j and n, 
where q(j) = k and q(n) = n, gives rise a better result. This 

(14)

Rn ⋅ r1 +⋯ + R
1
⋅ rn ≤ Rp(1) ⋅ r1

+⋯ + Rp(n) ⋅ rn ≤ R
1
⋅ r

1
+⋯ + Rn ⋅ rn.

(15)R1 > R2 and r1 > r2

(16)
(R1 − R2) ⋅ (r1 − r2) > 0 or R1 ⋅ r1 + R2 ⋅ r2 > R1 ⋅ r2 + R2 ⋅ r1

(17)R1 > ⋯ > Rn and r1 > ⋯ > rn

http://creativecommons.org/licenses/by/4.0/
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contradicts the choice of p. Hence p(n) = n, and from the 
induction hypothesis, p(i) = i ∀ i < n (Hardy et al. 1952).

The same proof holds if one replaces strict inequalities 
(“ < ”) by non-strict ones (“ ≤ ”) (Hardy et al. 1952).

Since, for a certain sequence of Ri values, the BC model 
provides a sequence of ri values that—in addition to comply-
ing with the constraint that the sum is constant and equal to 
n⋅(n + 1)/2—also maintains the order, it can be inferred that 
it maximizes the term of interest. The same consideration 
also applies if the BC model results in some ties between the 
objects in the collective ranking.

A.2. Ties in the BC collective ranking

The BC model determines a collective ranking (i.e., a set of ri 
values), which is similarly sorted with respect to the ranking 
of the Ri values (i.e., if Rk is greater than or equal to exactly Rj, 
then rk will also be greater than or equal to exactly rj).

Considering a ranking of Ri values of n objects, we 
assume that two of these values, respectively in positions 
j and j + 1, coincide. The BC model (cf. Sect. 2) will then 
produce a corresponding collective ranking, containing a tie 
between two corresponding objects in positions j and j + 1.

In this case, the sum of the component-by-component 
products between the two rankings is:

Focusing on the last two terms on the second member 
of Eq. 18 and imposing (1) Rj = Rj+1 = R, which reflects the 
initial hypothesis of a tie between the two Ri values, and 
(2) rj = rj+1 = [j + (j + 1)]/2 = j + ½, which reflects the aver-
age rank of the tied objects in the collective ranking, Eq. 
(18) results in:

Additionally, it can be demonstrated that the sum of the 
squares of the rj values is:

If we eliminate the tie between rj = j + ½ and rj+1 = j + ½, 
replacing the respective values with other values compatible 
with the condition 

∑n

i=1
ri =

n⋅(n+1)

2
 , we will obtain rj = j and 

rj+1 = j + 1 (or, vice versa: rj = j + 1 and rj+1 = j ). In this 

(18)
n
∑

i=1

(

Riri
)

=

[

∑

i∈(1,…,n)�{j,j+1}

(

Riri
)

]

+ Rjrj + Rj+1rj+1.

(19)
n
∑

i=1

(

Riri
)

=

[

∑

i∈(1,…,n)�{j,j+1}

(

Riri
)

]

+ 2

[

R
(

j +
1

2

)]

.

(20)

n
∑

i=1

r2
i
=

[

∑

i∈(1,…,n)�{j,j+1}

r2
i

]

+ 2

(

j +
1

2

)2

=

[

∑

i∈(1,…,n)�{j,j+1}

r2
i

]

+ 2j2 + 2j +
1

2
.

other case, the sum of the component-by-component prod-
ucts between the Ri and ri rankings is:

which is equivalent to Eq. 19. Consequently, it can be said 
that the new ri ranking, without ties, maximizes the term 
∑n

i=1

�

Riri
�

 as the one resulting from the BC model.
Additionally, in this other case the sum of the squares of 

the rj values is:

which is greater than that in Eq. 20, due to the last term: 
i.e., 1 instead of ½. It can therefore be deduced that the term 
∑n

i=1
r2
i
 is maximized in the case of absence of ties in the 

collective ranking.
Obviously, the above considerations can be extended to 

rankings with ties between more than two objects and/or 
rankings with different groups of ties.

A.3. Additional example

Table 6 exemplifies a fictitious problem consisting of m = 5 
expert rankings, concerning n = 5 alternatives (O1 to O5); for 
the sake of simplicity, the above rankings do not include ties.

Table 7 reports the collective rankings obtained through 
the four different aggregation models in Sect. 2 (i.e., BoB, 
BTW, BTH and BC) and several related indicators:

• W (m) = 74.4% , which depicts a relatively high degree of 
concordance among the expert rankings;

• The W (m+1)

k
 values, specifying the contributions of the 

three terms discussed in Sect. 3.2: 
∑n

i=1

�

Riri
�

 , 
∑n

i=1
r2
i
 

and Tm+1;
• The b(m)

k
 values.

(21)

n
∑

i=1

(

Riri
)

=

[

∑

i∈(1,…,n)�{j,j+1}

(

Riri
)

]

+ Rjj + Rj+1(j + 1),

(22)

n
∑

i=1

r2
i
=

[

∑

i∈(1,…,n)�{j,j+1}

r2
i

]

+ j2 + (j + 1)2

=

[

∑

i∈(1,…,n)�{j,j+1}

r2
i

]

+ 2j2 + 2j + 1,

Table 6  Rankings of five object (i.e., O1 to O5), formulated by five 
experts (i.e., D1 to D5)

Engineering designer Ranking

D1 O4 ≻ O1 ≻ O2 ≻ O5 ≻ O3

D2 O1 ≻ O4 ≻ O2 ≻ O3 ≻ O5

D3 O4 ≻ O1 ≻ O5 ≻ O2 ≻ O3

D4 O1 ≻ O4 ≻ O3 ≻ O2 ≻ O5

D5 O4 ≻ O2 ≻ O1 ≻ O5 ≻ O3
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The presence of ties for some collective rankings does 
not guarantee the achievement of the maximum value for the 
indicator b(m)

k
 through the BC model (Sect. 3.3.2).

It can be seen that the W (m+1)

k
 values are very close to each 

other, as are the respective b(m)
k

 values. Consistently with 
what illustrated in Sects. A.1 and A.2, the BC model—which 
results in a collective ranking without ties (see Table 7 (iv)) 
maximizes both the first two terms, 

∑n

i=1

�

Riri
�

 and 
∑n

i=1
r2
i
 , 

in the numerator of Eq. 8, but minimizes the third term, in 
the denominator of Eq. 8.

As mentioned, the aggregation model that maximizes 
W

(m+1)

k
 (and therefore also b(m)

k
 ) is not the BC model, as in the 

case study in Sect. 2, but the BTW model ( b(m)
BoB

= 1.0485 ), 
followed by the BTH model ( b(m)

BoB
= 1.0479 ) as it appears 

in the last column of Table 7. For this specific problem, the 
aggregation model obtained through the BC is only the third 
one in terms of coherence. This apparently negative result is 
at least partially mitigated, considering that:

• the b(m)
k

 values of the four models are extremely close 
to each other, in particular those of the first three ones 
(which differ by a few thousandths of a unit), reflecting 
collective rankings that are very close to each other (see 
the second column of Table 7).

• The term m, which is one of the two “size” terms of the 
specific problem (together with n), is relatively low in 
this case. It can be proven that the gap between b(m)

BC
 and 

b
(m)
∗ = b

(m)

BoB
 would tend to narrow as m increases.

A.4. Asymptotic analysis of b(m)

k

This section quantitatively analyses the contributions of the 
three terms of b(m)

k
 , which depend on the aggregation model (cf. 

Sect. 3): (i) 
∑n

i=1

�

Riri
�

 , (ii) 
∑n

i=1
r2
i
 , and (iii) Tm+1. Precisely, 

an asymptotic analysis of of b(m)
k

 is performed as the n and m 
parameters grow. Although we are aware that these parameters 
will never grow too much in realistic decision-making prob-
lems (e.g., reaching at most the order of magnitude of tens), the 
proposed analysis can nevertheless provide useful indications.

Considering Eq. (7), b(m)
k

 can be expressed as:

(23)b
(m)

k
=

W
(m+1)

k

W (m)
=

1

W (m)
⋅

12
�
∑n

i=1
R2

i

�

− 3(m + 1)2n(n + 1)2 + 24
�
∑n

i=1

�

Riri
��

+ 12
�
∑n

i=1
r2
i

�

(m + 1)2n
�

n2 − 1
�

− (m + 1)(
∑m

j=1
Tj) − (m + 1)Tm+1

.

The asymptotic order of magnitude of the various 
addenda in the numerator and denominator can then be 
determined using the so-called asymptotic notation by 
Bachmann-Landau, with respect to n and m (Knuth 1976). 
The numerator consists of four addenda:

where the operator “O()” (to be read as "big-O") describes 
the asymptotic order of magnitude of a generic function 
(Knuth 1976). We specify that, being the Ri terms given 
by the sum of m rankings that ∈ [1, n] , they will ∈ O(n⋅m).

Considering the n parameter alone, we note that all four 
addenda in the numerator are asymptotically of the same 
order of magnitude—O(n3)—so no one will tend to predomi-
nate over the others as n increases.

On the other hand, considering only the m parameter, we 
note that the fourth addend in the numerator, which con-
tains the term 

∑n

i=1
r2
i
 , will tend to be asymptotically negli-

gible compared to the third addend, which contains the term 
∑n

i=1

�

Riri
�

 . It can therefore be argued that as m increases, 
the contribution of the term 

∑n

i=1
r2
i
 tends to be negligible 

with respect to that of the term 
∑n

i=1

�

Riri
�

 , i.e., using the 
Bachmann–Landau notation (Knuth 1976):

(24)12

(

n
∑

i=1

R2

i

)

∈ O
(

n3 ⋅ m2
)

,

(25)−3(m + 1)2n(n + 1)2 ∈ O
(

n3 ⋅ m2
)

,

(26)+24

[

n
∑

i=1

(

Riri
)

]

∈ O
(

n3 ⋅ m
)

,

(27)+12

(

n
∑

i=1

r2
i

)

∈ O
(

n3
)

,

(28)
n
∑

i=1

r2
i
= o

[

n
∑

i=1

(

Riri
)

]

,

Table 7  W(m), W (m+1)

k
 and b(m)

k
 

values related to the m rankings 
in Table 6, when applying four 
different aggregation models (k: 
BoB, BTW, BTW, BC)

Aggregation model Collective ranking W (m)
W

(m+1)

k

∑n

i=1

�

Riri
�

∑n

i=1
r2
i

Tm+1 b
(m)

k

(i) Bob O4 ≻ O1 ≻ (O2 ~ O3 ~ O5) 74.40% 76.44% 261.0 53.0 24 1.0274
(ii) BTW O4 ≻ O1 ≻ O2 ≻ (O3 ~ O5) Idem 78.01% 266.5 54.5 6 1.0485
(iii) BTH (O1 ~ O4) ≻O2 ≻ (O3 ~ O5) Idem 77.97% 265.5 54.0 12 1.0479
(iv) BC O4 ≻ O1 ≻ O2 ≻ O5 ≻ O3 Idem 77.78% 267.0 55.0 0 1.0454
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where the operator “o()” (to be read as "little-o") describes 
the asymptotic negligibility of the first function compared to 
the second one (Knuth 1976). We further note that, although 
Eq. (28) exists, both terms 

∑n

i=1
r2
i
 and 

∑n

i=1

�

Riri
�

 , in the 
denominator of the fraction in Eq. (23), will tend to be 
asymptotically negligible compared to the first two addenda 
(cf. Eqs. (24) and (25), being both ∈ O

(

m2
)

.
With reference to the denominator, it consists of three 

addenda:

We specify that the Tj values and Tm+1 are O
(

n3
)

 (see also 
the considerations about Tj and Tm+1 in Sects. 2 and 3.2). 
Again, we note that the three addenda are asymptotically 
of the same order of magnitude with respect to parameter 
n. With respect to m, on the other hand, it emerges that the 
third addend (containing the term Tm+1) is asymptotically 
negligible compared to the other terms, that is:

In conclusion, this asymptotic analysis has not shown any 
clear trend, if not a certain predominance of the contribu-
tion of the term 

∑n

i=1

�

Riri
�

 compared to 
∑n

i=1
r2
i
 and Tm+1, 

as m grows. Therefore, aggregation models that maximise 
∑n

i=1

�

Riri
�

 , such as the BC model, will have a better chance 
of maximising the b(m)

k
 indicator.

References

Arrow KJ (2012) Social choice and individual values, 3rd edn. Yale 
University Press, New Haven

Borda JC (1781) Mémoire sur les élections au scrutin, Comptes Rendus 
de l’Académie des Sciences. Translated by Alfred de Grazia as 
Mathematical derivation of an election system. Isis 44:42

Borisov N, Weyers B, Kluge A (2018) Designing a human machine 
interface for quality assurance in car manufacturing: an attempt 
to address the “Functionality versus User Experience Contradic-
tion” in Professional Production Environments. Adv Hum Comput 
Interact. https ://doi.org/10.1155/2018/95026 92

Boyd TM, Markman SJ (1983) The 1982 amendments to the Voting 
Rights Act: a legislative history. Wash Lee L Rev 40:1347

Brown DM (2013) Designing together: the collaboration and conflict 
management handbook for creative professionals. Pearson Educa-
tion, London

(29)(m + 1)2n
(

n2 − 1
)

∈ O
(

n3 ⋅ m2
)

,

(30)−(m + 1)

(

m
∑

j=1

Tj

)

∈ O
(

n3 ⋅ m2
)

,

(31)−(m + 1)Tm+1 ∈ O
(

n3 ⋅ m
)

.

(32)

−(m + 1)Tm+1 = o

[

(m + 1)2n
(

n2 − 1
)

− (m + 1)

(

m
∑

j=1

Tj

)]

.

Cagan J, Vogel CM (2012) Creating breakthrough products: innovation 
from product planning to program approval, 2nd edn. FT Press, 
Upper Saddle River

Chen S, Liu J, Wang H, Augusto JC (2012) Ordering based decision 
making–a survey. Inf Fusion 14(4):521–531

Chiclana F, Herrera F, Herrera-Viedma E (2002) A note on the internal 
consistency of various preference representations. Fuzzy Sets Syst 
131(1):75–78

Cook WD (2006) Distance-based and ad hoc consensus models in ordi-
nal preference ranking. Eur J Oper Res 172(2):369–385

Cook WD, Seiford LM (1978) Priority ranking and consensus forma-
tion. Manag Sci 24(16):1721–1732

Cook WD, Seiford LM (1982) On the Borda-Kendall consensus 
method for priority ranking problems. Manag Sci 28(6):621–637

Dong A, Hill AW, Agogino AM (2004) A document analysis method 
for characterizing design team performance. J Mech Des 
126(3):378–385

Dwarakanath S, Wallace KM (1995) Decision-making in engineer-
ing design– observations from design experiments. J Eng Des 
6(3):191–206

Dym CL, Wood WH, Scott MJ (2002) Rank ordering engineering 
designs: pairwise comparison charts and Borda counts. Res Eng 
Design 13:236–242

Emerson P (2013) The original Borda count and partial voting. Soc 
Choice Welfare 40(2):353–358

Fishburn PC (1973a) The theory of social choice. Princeton University 
Press, Princeton

Fishburn PC (1973b) Voter concordance, simple majorities, and group 
decision methods. Behav Sci 18:364–376

Franceschini F, Maisano D (2015) Checking the consistency of the 
solution in ordinal semi-democratic decision-making problems. 
Omega 57(1):188–195

Franceschini F, Maisano D (2017) Consistency analysis in quality clas-
sification problems with multiple rank-ordered agents. Qual Eng 
29(4):672–689

Franceschini F, Garcia-Lapresta JL (2019) Decision-making in semi-
democratic contexts. Inf Fusion 52(1):281–289

Franceschini F, Maisano D (2019a) Design decisions: concordance 
of designers and effects of the Arrow’s theorem on the collective 
preference ranking. Res Eng Design 30(3):425–434

Franceschini F, Maisano D (2019b) Fusing incomplete preference 
rankings in manufacturing decision-making contexts through the 
 ZMII-technique. Int J Adv Manuf Technol 103(9–12):3307–3322

Franceschini F, Maisano D (2020) Decision concordance with incom-
plete expert rankings in manufacturing applications. Res Eng 
Design 31(4):471–490

Franceschini F, Maisano D, Mastrogiacomo L (2015) Customer 
requirements prioritization on QFD: a new proposal based on the 
generalized Yager’s algorithm. Res Eng Design 26(2):171–187

Franceschini F, Maisano D, Mastrogiacomo L (2016) A new proposal for 
fusing individual preference orderings by rank-ordered agents: A gen-
eralization of the Yager’s algorithm. Eur J Oper Res 249(1):209–223

Franceschini F, Galetto M, Maisano D (2019) Designing performance 
measurement systems: theory and practice of key performance 
indicators. Springer International Publishing, Cham, Switzerland

Franssen M (2005) Arrow’s theorem, multi-criteria decision problems 
and multi-attribute preferences in engineering design. Res Eng 
Des 16(1–2):42–56

Frey DD et al (2009) The Pugh controlled convergence method: model-
based evaluation and implications for design theory. Res Eng Des 
20(1):41–58

Frey DD et al (2010) Research in engineering design: the role of 
mathematical theory and empirical evidence. Res Eng Des 
21(3):145–151

https://doi.org/10.1155/2018/9502692


103Research in Engineering Design (2021) 32:91–103 

1 3

Fu K, Cagan J, Kotovsky K (2010) Design team convergence: the influ-
ence of example solution quality. J Mech Des 132(11):111005

Gibbons JD, Chakraborti S (2010) Nonparametric statistical inference 
(5th ed). CRC Press, Boca Raton, ISBN 978-1420077612

Grebici K, Ouertani MZ, Blanco E, Gzara-Yesilbas L, Rieu D (2006) 
Conflict management in design process: focus on changes impact. 
Front Artif Intell Appl 143:161–168

Hammond JS, Keeney RL, Raiffa H (2015) Smart choices: a practi-
cal guide to making better decisions. Harvard Business Review 
Press, Brighton

Hardy GH, Littlewood JE, Pólya G (1952) Inequalities. Cambridge 
Mathematical Library 2nd ed. (section 10.2, Theorem 368), Cam-
bridge University Press, Cambridge, ISBN 0-521-05206-8

Hazelrigg GA (1996) The implications of Arrow’s impossibility theo-
rem on approaches to optimal engineering design. J Mech Des 
118(2):161–164

Hazelrigg GA (1999) An axiomatic framework for engineering design. 
J Mech Des 121(3):342

Hazelrigg GA (2010) The Pugh controlled convergence method: 
model-based evaluation and implications for design theory. Res 
Eng Des 21(3):143–144

Herrera-Viedma E, Cabrerizo FJ, Kacprzyk J, Pedrycz W (2014) A 
review of soft consensus models in a fuzzy environment. Inf 
Fusion 17:4–13

Hoyle C, Chen W (2011) Understanding and modelling heteroge-
neity of human preferences for engineering design. J Eng Des 
22(8):583–601

Jacobs JF, van de Poel I, Osseweijer P (2014) Clarifying the debate on 
selection methods for engineering: arrow’s impossibility theo-
rem, design performances, and information basis. Res Eng Des 
25(1):3–10

Kaldate A, Thurston D, Emamipour H, Rood M (2006) Engineering 
parameter selection for design optimization during preliminary 
design. J Eng Des 17(4):291–310. https ://doi.org/10.1080/09544 
82050 02740 27

Katsikopoulos K (2009) Coherence and correspondence in engineering 
design: informing the conversation and connecting with judgment 
and decision-making research. Judgm Decis Making 4(2):147–153

Kendall (1962) Rank correlation methods. Griffin & C, London
Kendall MG, Smith BB (1939) The problem of m-rankings. Ann Math 

Stat 10:275–287
Keeney RL (2009) The foundations of collaborative group decisions. 

Int J Collab Eng 1:4
Knuth DE (1976) Big omicron and big omega and big theta. ACM 

Sigact News 8(2):18–24
Ladha K, Miller G, Oppenheimer J (2003) Information aggregation by 

majority rule: theory and experiment. https ://www.gvpts ites.umd.
edu/oppen heime r/resea rch/jury.pdf

Legendre P (2005) Species associations: the Kendall coefficient of con-
cordance revisited. J Agric Biol Environ Stat 10:226

Legendre P (2010) Coefficient of concordance. In: Salkind NJ (ed) 
Encyclopedia of research design, vol 1. SAGE Publications Inc, 
Los Angeles, pp 164–169

Li H, Bingham JB, Umphress EE (2007) Fairness from the top? Per-
ceived procedural justice and collaborative problem solving in 
new product development. Organ Sci 18(2):200–216

McComb C, Goucher-Lambert K, Cagan J (2017) Impossible by 
design? Fairness, strategy and Arrow’s impossibility theorem. 
Des Sci 3:1–26

Myers JL, Well A, Lorch RF (2010) Research design and statistical 
analysis. Routledge, Abingdon

Nisan N (ed) (2007) Algorithmic game theory. Cambridge University 
Press, Cambridge

Nurmi H (2012) On the relevance of theoretical results to voting system 
choice. In: Felsenthal DS, Machover M (eds) Electoral systems: 
studies in choice and welfare. Springer, Berlin, pp 255–274

Paulus PB, Dzindolet MT, Kohn N (2011) Collaborative creativity, 
group creativity and team innovation. In: Mumford MD (ed) 
Handbook of organizational creativity. Elsevier, Amsterdam, pp 
327–357

Reich Y (2010) My method is better! Res Eng Design 21(3):137–142
Ross SM (2009) Introduction to probability and statistics for engineers 

and scientists. Academic Press, Cambridge
Saari DG (1995) Geometry of voting. Elsevier B.V, Amsterdam
Saari DG (2011) Decision and elections. Cambridge University Press, 

Cambridge
Saari DG, Sieberg KK (2004) Are partwise comparisons reliable? Res 

Eng Design 15(1):62–71
Scott MJ, Antonsson EK (1999) Arrow’s theorem and engineering 

design decision making. Res Eng Des 11:218–228
See TK, Lewis K (2006) A formal approach to handling conflicts in 

multiattribute group decision making. J Mech Des 128(4):678
Spearman C (1904) The proof and measurement of association between 

two things. Am J Psychol 15(1):72–101
Stark PB (2008) Conservative statistical post-election audits. Ann Appl 

Stat 2(2):550–581
Weingart LR et al (2005) Functional diversity and conflict in cross-

functional product development teams: considering representa-
tional gaps and task characteristics. In: Neider LL, Schriesheim 
CA (eds) Understanding teams. Information Age Publishing, 
Charlotte, pp 89–110

Yeo SH, Mak MW, Balon SAP (2004) Analysis of decision-making 
methodologies for desirability score of conceptual design. J Eng 
Des 15(2):195–208

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1080/09544820500274027
https://doi.org/10.1080/09544820500274027
http://www.gvptsites.umd.edu/oppenheimer/research/jury.pdf
http://www.gvptsites.umd.edu/oppenheimer/research/jury.pdf

	Aggregating multiple ordinal rankings in engineering design: the best model according to the Kendall’s coefficient of concordance
	Abstract
	1 Introduction
	2 Case study
	3 Testing and maximizing the coherence
	3.1 The W(m+1) test
	3.2 Maximization of 
	3.2.1 Analysis of 
	3.2.2 Analysis of 
	3.2.3 Analysis of 

	3.3 Close link between  and the Borda count model
	3.3.1 Absence of ties in the collective ranking
	3.3.2 Presence of ties in the collective ranking


	4 Discussion
	4.1 Implications and limitations for engineering design
	4.2 Original contributions and ideas for future research

	Acknowledgements 
	References




