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Abstract: Recent studies show that the combined use of large-volume 
metrology (LVM) systems (e.g., laser trackers, rotary-laser automatic 
theodolites, photogrammetric systems, etc.) can lead to a systematic reduction 
in measurement uncertainty and a better exploitation of the available 
equipment. The objective of this paper is to present some diagnostic tests for 
combinations of LVM systems that are equipped with distance and/or angular 
sensors. Two are the tests presented: a global test to detect the presence of 
potential anomalies during measurement and a local test to isolate any faulty 
sensor(s). This diagnostics is based on the cooperation of sensors of different 
nature, which merge their local measurement data, and it can be implemented 
in real-time, without interrupting or slowing down the measurement process. 
The description of the tests is supported by several experimental examples. 
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1 Introduction 

The field of large-volume metrology (LVM) deals with objects with linear dimensions 
ranging from several metres to tens of metres (Estler et al., 2002; Peggs et al., 2009; 
Franceschini et al., 2011; Schmitt et al., 2016). Typical industrial applications concern 
dimensional verification and assembly of large-sized mechanical components, in which 
levels of uncertainty of several tenths of millimetre are generally tolerated (Maropoulos 
et al., 2014; Chen et al., 2015). These applications are typically performed using 
technologically advanced LVM systems, which are very expensive and may require time 
consuming set-up and measurement operations (Franceschini and Maisano, 2014). 

LVM systems are usually equipped with sensors able to perform local measurements 
of distances and/or angles. Depending on the sensor layout, LVM systems can be 
classified into: 

1 centralised, if sensors are grouped into a unique stand-alone unit (e.g., a laser 
tracker) 

2 distributed, if sensors are spread around the measurement volume [e.g., a set of 
rotary-laser automatic theodolites (Maisano et al., 2008)]. 

Even though the existing measuring systems may differ in technology and metrological 
characteristics, two common features are: 

1 the use of some targets to be localised, which are generally mounted on a hand-held 
probe for localising the points of interest or in direct contact with the measured 
object’s surface 

2 the fact that target localisation is performed using local measurements by sensors. 

For distributed LVM systems, sensors are arranged around the measured object and there 
are three possible approaches for target localisation (Franceschini et al., 2011): 

• multilateration, using the distances between targets and sensors 

• multiangulation, using the angles subtended by targets with respect to sensors 

• hybrid techniques, which are based on the combined use of angles and distances 
between targets and sensors. 

Although several types of LVM systems are (not rarely) available in the same industrial 
workshop or metrology laboratory, they are often used independently of each other (e.g., 
a laser tracker is used for certain tasks, a photogrammetric system for others, and so on). 
This is a rather myopic view because it ignores the benefits that may result from the 
combination of multiple systems, including but not limited to: 

• overcoming the limitations of the individual systems 

• improving measurement accuracy and coverage 

• reducing the risk of measurement errors, due to measurement redundancy. 

Franceschini et al. (2016) recently proposed a novel approach, in which a combination of 
LVM systems that are equipped with sensors of different nature – i.e., sensors with 
different metrological characteristics and able to measure distances and/or angles – share 
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their measurement data and cooperate for determining a unique localisation of the target. 
In other words, data provided by a number of sensors from different LVM systems are 
fused together in order to localise the target (Galetto et al., 2015; Franceschini et al., 
2016; Maisano and Mastrogiacomo, 2016). According to this philosophy, the set of 
(centralised and/or distributed) LVM systems that are used in conjunction can be seen as 
a single distributed LVM ‘macro-system’, consisting of sensors of different nature. 

The purpose of this article is to present some statistical tests, which provide a 
practical online diagnostics functionality. These tests allow to detect possible 
measurement anomalies and, subsequently, isolate any potentially faulty sensor(s). This 
diagnostics can be classified as cooperative, since it is based on the cooperation of 
sensors of different nature. 

In detail, two statistical tests will be discussed: 

• a global test, aimed at evaluating the consistency of the target localisation, based on 
the variability of the local measurements by sensors 

• a local test that – when a target localisation is not considered consistent by the global 
test – identifies the potentially faulty sensor(s) and (temporarily) excludes them from 
the target-localisation process, without interrupting it. 

These tests can interpreted as a generalisation of similar tests that have been previously 
developed: i.e., 

1 some tests for distributed LVM systems with distance sensors only 

2 other tests for distributed LVM systems with angular sensors only; in this sense, this 
research represents an important update of (Franceschini et al., 2009, 2014). 

The remainder of this paper is structured into four sections. Section 2 provides some 
background information, which is helpful to grasp the subsequent description of 
statistical tests, precisely: 

1 basic concepts concerning diagnostics 

2 a synthetic description of the target-localisation mathematical model in use. 

Section 3 provides a detailed description of the statistical tests, with several experimental 
examples. Section 4 summarises the original contributions of this research, focusing on 
its implications, limitations and possible future developments. Details on the 
mathematical model for target localisation are contained in the Appendix. 

2 Background information 

2.1 Basic concepts concerning diagnostics 

In general, the concept of consistency of a measurement is defined as follows. For each 
measurable quantity x, we can define a confidence interval [LL, UL] (where LL stands for 
lower limit and UL for upper limit). The measure ˆ( )x  of the quantity x is considered 
consistent if [ ]ˆ ,x LL UL∈  (Gertler, 1998; Franceschini et al., 2011). 
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The type-I and type-II probability errors (misclassification rates) respectively 
correspond to: 

[ ]{ }
[ ]{ }

ˆPr , | absence of systematic error sources

ˆPr , | presence of systematic error sources

x LL UL

x LL UL

= ∉

= ∈

α

β
 (1) 

Usually, LL and UL reflect the natural variability of the measurement system (which is 
related to the metrological characteristics of accuracy, reproducibility, repeatability, 
etc.), in the absence of systematic error sources1 (JCGM 200:2008, 2008). 

For distributed systems, local anomalies in one or more sensors can distort or even 
compromise the target localisation. On the other hand, when these anomalies are 
recognised, the target-localisation results can be corrected by (temporarily) excluding 
malfunctioning sensor(s). This is the reason why distributed systems are – to some extent 
– rather ‘vulnerable’ but can be successfully protected by appropriate diagnostic tools. 

The diagnostics presented in this paper can be classified as cooperative, since the 
sensor local measurements are used in conjunction: not only for localising the target but 
also for detecting possible measurement anomalies/accidents in this process. As 
mentioned in Section 1, this diagnostics includes two tests (global and local), aimed 
respectively at 

1 identifying inconsistent localisations 

2 identifying and (temporarily) excluding purportedly faulty sensors. 

2.2 Mathematical model for target localisation 

This section briefly recalls a recent mathematical model for target localisation, when 
using combinations of LVM systems equipped with sensors of different nature. In 
general, each ith LVM system (Si) includes a number of sensors; we conventionally 
indicate the generic jth sensor of Si as sij (e.g., si1, si2, …, sij, …). Sensors can be classified 
in two typologies: 

• distance sensors, able to measure their distance (dij) from the target (see Figure A2, 
in the Appendix) 

• angular sensors, able to measure the azimuth (θij) and elevation (φij) angle subtended 
by the target (see Figure A2, in the Appendix). 

Assuming that P is the point to be localised in the 3D space (e.g., the centre of a spherical 
target), the localisation problem may be formulated through the following linear (or 
linearised) model (Galetto et al., 2015; Franceschini et al., 2016): 

0
   

⋅ − ≡ ⋅ − =   
   

dist dist

ang ang

A B
A X B X

A B
 (2) 

where X = [X, Y, Z]T is the position vector of P in a global Cartesian coordinate system 
OXYZ; Adist, Aang and Bdist, Bang are respectively the so-called design and reduced 
measured observation matrices, both referred to OXYZ (Wolberg, 2005). The matrices 
related to distance sensors are labelled with superscript ‘dist’, while those related to  
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angular sensors with superscript ‘ang’. A and B contain several parameters related to 
each generic (ij)th sensor: the position/orientation parameters ( 0 0 0, ,ij ij ijX Y Z  and ωij, φij, 
κij) and the distance (dij) and/or angles (θij, φij) subtended by the target, with respect to a 
local Cartesian coordinate system oijxijyijzij. Since the ‘true’ values of the above 
parameters are never known exactly, they can be replaced with appropriate estimates: 

0 0 0 ˆˆ ˆ ˆ ˆ ˆ, , , , andij ij ij ij ij ijX Y Z ω κφ  resulting from initial calibration process(es), ˆ
ijd  resulting 

from distance measurements, îjθ  and îjφ  and resulting from angular measurements. For 
details on the construction of A and B, see Section A1 (in the Appendix). 

The unknown coordinates of P are determined solving the system in equation (2), 
which is generally overdefined, i.e., there are more equations than unknown parameters: 
one for each distance sensor and two for each angular sensor. 

The equations of the system may differently contribute to the uncertainty in the 
localisation of P. Three important factors affecting this uncertainty are: 

1 Uncertainty in the local measurements ˆ ˆ ˆ( , and )ij ij ijd θ φ  by sensors, which generally 
depends on their metrological characteristics. 

2 Relative position between P and each sensor; e.g., for angular sensors, the 
uncertainty in the localisation of P increases proportionally to the distance between P 
and the sensors (Maisano and Mastrogiacomo, 2016). 

3 Uncertainty in the position/orientation of sensors, resulting from initial calibration 
process(es). 

For simplicity, the proposed mathematical model considers only the first two factors, 
neglecting the third one (Maisano and Mastrogiacomo, 2016). 

Having said that, it would be appropriate to solve the system in equation (2) giving 
greater weight to the contributions from the sensors producing less uncertainty and  
vice versa. To this purpose, a practical method is that of generalised least squares (GLS) 
(Franceschini et al., 2011; Kariya and Kurata, 2004), in which a weight matrix (W), 
which takes into account the uncertainty produced by the equations, is defined as: 

( )( ) 1T −
 = ⋅ ⋅ W J cov ξ J  (3) 

where J is the Jacobian matrix containing the partial derivatives of the elements in the 
first member of equation (2) (i.e., A ⋅ X – B) with respect to the sensors’ local 
measurements (contained in the vector ξ), and cov(ξ) is the relevant covariance matrix. 
For details, see Section A1 in the Appendix. 

Assuming that sensors work independently from each other and there is no correlation 
between the local measurements related to different sensors, cov(ξ) is a diagonal matrix 
containing the variances related to these measurements. Variances can be determined in 
several ways: 

1 from manuals or technical documents relating to the sensors in use 

2 estimated through ad hoc experimental tests 

3 estimated using data from previous calibration processes. 
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We remark that these values should reflect the sensors’ uncertainty in realistic working 
conditions, e.g., in the presence of vibrations, light/temperature variations and other 
typical disturbance factors. 

By applying the GLS method to the system in equation (3), we obtain the final 
estimate of X as: 

( ) 1ˆ T T−= ⋅ ⋅ ⋅ ⋅ ⋅X A W A A W B  (4) 

For further details on the GLS method, see Kariya and Kurata (2004). 

3 Online diagnostic tests 

This section is organised into two subsections: Section 3.1 describes a global test to 
evaluate the consistency of a target localisation, while Section 3.2 describes a local test 
that – when a target localisation is not considered consistent by the global test – identifies 
the potentially faulty sensor(s) and (temporarily) excludes them from the localisation 
process, without interrupting it. 

Before going into the discussion of the tests, we define the residuals of the sensor 
local measurements as the difference between the measured quantities (labelled with the 
symbol ‘^’) and those calculated using the coordinates of P, resulting from the 
localisation process [see equations (A3) and (A7), in the Appendix]: 

}ˆ   for distance sensors

ˆ
  for angular sensors

ˆ

ij

ij

ij

d ij ij

θ ij ij

φ ij ij

ε d d

ε θ θ
ε φ φ

= −

= − 
= − 

 (5) 

In the absence of systematic error causes, it is reasonable to hypothesise that these 
residuals follow zero-mean normal distributions: 2~ Ν( 0, ),ij ij ijd d dε μ σ≈  

2~ Ν( 0,  )ij ij ijθ θ θε μ σ≈  and 2~ Ν( 0,  );ij ij ijφ φ φε μ σ≈  these hypotheses will be tested 

experimentally. The dispersion of residuals (depicted by the relevant variances 2 2,
ij ijd θσ σ  

and 2
ijφσ ) depends on the technical/metrological characteristics of sensors; e.g., 

measurements performed using technologically advanced sensors, such as the 
interferometer or absolute distance metre (ADM) of a laser tracker, are likely to be less 
dispersed than those performed using relatively coarse sensors, such as ultrasonic 
distance sensors or low-end photogrammetric cameras. 

Assuming that 2 2,
ij ijd θσ σ  and 2

ijφσ  are known, residuals can be standardised as follows: 

 

 
 

ij ij ij
ij

ij ij

ij ij ij
ij

ij ij

ij ij ij
ij

ij ij

d d d
d

d d

θ θ θ
θ

θ θ

φ φ φ
φ

φ φ

ε μ ε
z for distance sensors

σ σ

ε μ ε
z

σ σ
for angular sensors

ε μ ε
z

σ σ

− = ≈ 


− 
= ≈ 


− = ≈ 

 (6) 
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The resulting standardised residuals are, by definition, normally distributed random 
variables with zero mean and unit variance: , , (0, 1).ij ij ijd θ φz z z N∼  

3.1 Global test 

The first diagnostic criterion is aimed at identifying the non-plausible localisations of P. 
The standardised residuals related to the sensors involved in the target localisation [see 
equation (6)] are aggregated into the standardised residual sum of squares (SRSS) 
indicator: 

( ) ( )2 2 2 2 2 2
ij ij ij ij ij ij

dist ang dist ang ang
d θ φ d θ φ

ij I ij I ij I ij I ij I

SRSS P z z z z z z
∈ ∈ ∈ ∈ ∈

= + + = + +      (7) 

where Idist and Iang are the sets of index-pair values (ij), relating to the sensors able to 
perform distance and angular measurements respectively. In general, these types of local 
measurements are mutually exclusive, since sensors able to measure distances are not 
able to measure angles and vice versa. 

By definition, SRSS(P) ≥ 0 for all the points (P) in the measurement volume. Since 
the localisation problem is overdetermined and sensor measurements are naturally 
dispersed, a solution that exactly satisfies all distance and angular constrains (i.e., 
SRSS(P) = 0) is not realistically possible. 

In a broader perspective, SRSS(P) is the sum of |Idist|, |Iang| and |Iang| squared 
realisations (the symbol ‘| |’ denotes the cardinality of a set) of the zero-mean and  
unit-variance normally distributed random variables , and .ij ij ijd θ φz z z  SRSS(P) can 
therefore assume the following form: 

( ) 2 2 2
ij ij ijd θ φSRSS P χ χ χ= + +  (8) 

where 2 2,
ij ijd θχ χ  and 2

ijφχ  are three chi-square distributed random variables, with 

respectively |Idist|, |Iang| and |Iang| degrees of freedom (DoF), since they are obtained by 
summing independent terms. 

SRSS(P) is a new chi-square distributed random variable with |Idist| + |Iang| + |Iang| = 
|Idist| + 2∙|Iang| DoF, since it is obtained by adding the three above chi-square distributed 
variables (Ross, 2009). 

Every time the localisation of a target is performed, diagnostics calculates the 
quantity SRSS(P). Assuming a risk α as a type-I error, a one-sided confidence interval for 
SRSS(P) can be calculated in order to test the consistency of the localisation; 2

,1v αχ −  is the 
upper limit of this interval, considering a chi-square distribution with v = |Idist| + 2∙|Iang| 
DoF and a (1 – α) confidence level. 

The test drives to the following two alternative conclusions: 
2
,1( ) v αSRSS P χ −≤  → localisation is considered consistent 

2
,1( ) v αSRSS P χ −>  → localisation is considered inconsistent, hence it is rejected. 
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3.1.1 Set up of test parameters 

The risk level α is established by the user. A high α prevents from dubious localisations, 
although it might drive to reject good ones. On the other hand, a low α speeds up the 
localisation process, although it might drive to collect wrong data due to the consequent 
increase of the type-II error (β). 

The variances of residuals – which are essential for calculating the standardised 
residuals – can be determined empirically, localising a sample of M points randomly 
distributed in the measurement volume, in the absence of systematic error sources. For 
each k-th point, the three types of residuals defined in equation (5) can be calculated: 

,ij ijd θε ε  and .ijφε  The number of residuals of each type may change depending on the 
number of sensors involved in each kth localisation, which is in turn influenced by their 
communication range and relative position with respect to P (Maisano and 
Mastrogiacomo, 2016). 

In the absence of systematic error causes and time or spatial/directional effects, it is 
reasonable to assume that homologous residuals – i.e., residuals concerning the same type 
of measured quantity ˆ ˆ( ,ij ijd θ  and ˆ ),ijφ  from sensors of the same (ith) LVM system – are  
zero-mean normally distributed random variables with the same dispersion. This is 
justified by the fact that the local-measurement dispersion of sensors is closely related to 
their technical and metrological characteristics. 

Therefore, the mean values and variances of the residuals of the problem are reduced 
to: 

• •

• •

• •

2

2

2

,  for the residuals

,  for the residuals

, for the  residuals

i iji

i iji

i iji

d dd

θ θθ

φ φφ

μ σ ε

μ σ ε

μ σ ε

 (9) 

where the subscript ‘i•’ indicates that these parameters are calculated aggregating the 
residuals related to sensors from the ith LVM system (Si), considering the totality of the 
localisations of the M points available. The resulting mean values can be used to test the 
hypothesis of zero-mean distributions, while the variances can be used to determine the 
standardised residuals for the test [see equation (6)]. 

3.1.2 First experimental example 
In a first example, let us consider a specific combination of two LVM prototype systems: 

(S1) MScMS-I, i.e., a system consisting of multiple ultrasonic sensors – denominated 
Crickets (Franceschini et al., 2010) – which are able to measure their distance 
from the target. 

(S2) MScMS-II, i.e., a system consisting of different toy cameras – PixArt/WiiMote 
infrared cameras, with 126∙96 pixels resolution and 100 fps – which are able to 
measure the angles subtended by the target (Franceschini et al., 2011). 

Both systems have been designed and developed at Politecnico di Torino – DIGEP and 
include inexpensive but not very accurate sensors, e.g., the typical distance-measurement 
uncertainty of Crickets is of the order of a few millimetres (Franceschini et al., 2010), 
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while the angular-measurement uncertainty of the toy cameras is of the order of some 
tenths of a degree (Maisano and Mastrogiacomo, 2016). 

We set up a distributed LVM ‘macro-system’ consisting of five Crickets (i.e., s11, s12, 
s13, s14 and s15) and three toy cameras (i.e., s21, s22 and s23) with known positions and 
orientations, which are distributed around the measurement volume, as schematised in 
Figure 1. 

The variances of the residuals were estimated empirically, considering a sample of 
about M = 50 points, which are randomly distributed in the measurement volume. The 
localisation of these points was performed in a controlled environment (e.g., temperature, 
light and vibrations were kept under control) and the distributions of residuals were 
thoroughly analysed, in order to exclude measurement accidents, e.g., time or 
spatial/directional effects, or non-random causes of variation in general. 

Since all the MScMS-I distance sensors as well as the MScMS-II angular sensors are 
nominally identical, residuals can be grouped into three sets: one (including the 1 jdε  
residuals) for the distance sensors from S1, and two (including the 2 jθε  and 2 jφε  
residuals) for the angular sensors from S2. The zero-mean normal distribution of these 
sets of residuals was verified by the Anderson-Darling normality test at p < 0.05 (Ross, 
2009). 

Table 1 reports the mean and standard-deviation values estimated for these sets of 
residuals. 

Table 1 Estimated mean value and variance related to the local-measurement residuals, in the 
first experimental example 

Residuals Sensors Number Mean value Variance 

1 jdε  s11, s12, s13, s14 and s15 5 ∙ 50 = 250 
1•ˆdμ  = –0.05 mm 

1•
2ˆdσ  = 3.38 mm2 

2 jθε  s21, s21 and s23 3 ∙ 50 = 150 
2•ˆθμ  = 0.02 deg 

2•
2ˆθσ  = 0.083 deg2 

2 jφε  Idem Idem 
2•ˆφμ  = –0.038 deg 

2•
2ˆφσ  = 0.090 deg2 

In conditions of maximum visibility – i.e., all the five distance sensors and three angular 
sensors are able to see the target P – the confidence-interval limit for SRSS, assuming a 
type-I risk level α = 0.05 and v = |Idist| + 2∙|Iang| = 5 + 2 ⋅ 3 = 11 DoF, becomes: 

2
11,1 0.95( ) ( ) 19.7νSRSS P χ SRSS P= − =≤  ≤α  (10) 

Let us now consider a possible accident that can occurs using ultrasonic sensors. 
Referring to the representation in Figure 2, suppose that an obstacle, for example an 
operator who performs the measurement, is interposed between P and two of the distance 
sensors (i.e., s12 and s13), blocking them. At the same time, the ultrasonic signal reflection 
on the floor/ceiling of the workshop produces two wrong measurements. Consequently, 
the distance measurements by s12 and s13 are significantly overestimated. Also, it is 
assumed that the remaining sensors are able to perform their local measurements 
correctly; see the example in Table 2(a). 
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Figure 1 Representation of the position and orientation of the distance (s1j) and angular (s2j) 
sensors in use in the first experimental example, (a) 3D view (b) XY plane view  
(see online version for colours) 
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Notes: OXYZ is the global coordinate system (coordinates in millimetres). 
The outgoing vectors (in blue) represent the sensor orientations. 
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Figure 2 Scheme of the set-up in the first experimental example (see online version for colours) 
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Note: A measurement accident in two (ultrasonic) sensors (i.e., s12 and s13) of S1 causes 
wrong distance measurements (d12 and d13). 

In this case, the mathematical model will produce the following (distorted) localisation 
solution: P ≡ (–99.9, 1449.7, 21.2) [mm], which is characterised by a high error:  
SRSS(P) ≈ 1.2 ⋅ 105 > 19.7. Owing to this result, the global test suggests that this 
localisation is inconsistent. 
Table 2 Example of local measurements by the sensors of a combination of two LVM systems 

(S1 and S2) in the first experimental example, (a) in the presence of an accident causing 
wrong distance measurements by s12 and s13 (b) after removing the cause of the 
accident 

Sensor 
(a) Accident present  (b) Accident removed 

dij [mm] θij [deg] φij [deg]  dij [mm] θij [deg] φij [deg] 
s11 3,272.6 N/A N/A  3,274.6 N/A N/A 
s12 (Wrong) 4,236.5 N/A N/A  (Correct) 2,814.9 N/A N/A 
s13 (Wrong) 3,196.3 N/A N/A  (Correct) 1,970.4 N/A N/A 
s14 3,314.0 N/A N/A  3,318.1 N/A N/A 
s15 2,857.1 N/A N/A  2,856.8 N/A N/A 
s21 N/A 13.37 –29.36  N/A 13.42 –29.36 
s22 N/A –10.33 –34.35  N/A –10.23 –34.46 
s23 N/A 122.80 –35.86  N/A 122.91 –35.83 

After removing the obstacle, the new distances related to s12 and s13 are respectively  
d12 = 4236.5 mm and d13 = 3196.3 mm, while the local measurements relating to the 
remaining sensors are almost identical to the previous ones [see Table 2(b)]. The new 
localisation is: P ≡ (352.7, 698.6, 560.6) [mm]. The corresponding SRSS value is 
SRSS(P) ≈ 4.44 ≤ 19.7. Hence, the new localisation can be considered consistent. 
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3.1.3 Second experimental example 
Let us consider a second example in which two LVM systems include sensors with 
relatively high metrological characteristics. Precisely, these two systems are: 

(S1) A distributed photogrammetric system consisting of three Hitachi Gigabit 
Ethernet photogrammetric infrared cameras (s11, s12 and s13) – pixel resolution: 
1,360 × 1,024, frame rate: 30 fps (Hitachi Kokusai Electric Inc., 2016) – using a 
38.1 mm reflective spherical target. Each camera is able to provide the azimuth 
(θ11, θ12, and θ13) and elevation (φ11, φ12, and φ13) angular measurements with 
respect to the target P. 

(S2) A laser tracker API RadianTM (API, 2016) with a spherically mounted 
retroreflector (SMR) of the same diameter of the target of S1. S2 is equipped with 
an ADM (s21), providing distance measurements (d21) and an angular sensor (s22), 
providing two angular measurements – i.e., azimuth (θ22) and elevation (φ22) – of 
P. The local Cartesian coordinate systems of the two sensors are coincident. 

We set up a distributed LVM ‘macro-system’ consisting of total five sensors (i.e., s11, s12, 
s13, s21 and s22) with known positions and orientations, which are distributed around the 
measurement volume, as schematised in Figure 3. 

The proposed localisation model is able to estimate the 3D position of each measured 
point, based on the nine local measurements available (i.e., two angular measurements for 
each of the three photogrammetric cameras; two angular measurements and one distance 
measurement for the laser tracker). 

The mean values and variances related to the local-measurement residuals were 
estimated on the basis of the localisation of M = 50 points, which are randomly 
distributed in the measurement volume. The resulting values are reported in Table 3. 
Table 3 Estimated mean value and variance related to the local-measurement residuals, in the 

second experimental example 

Residuals Sensors Number Mean value Variance 

1 jθε  s11, s12 and s13 3 ∙ 50 = 150 1•ˆθμ  = 1.9 ∙ 10–4 deg 
1•

2ˆθσ  = 2.5∙10–4 deg2 

1 jφε  Idem 3 ∙ 50 = 150 1•ˆφμ  = 2.0 ∙ 10–4 deg 
1•

2ˆφσ  = 2.6∙10–4 deg2 

2 jdε  S21 50 1•ˆdμ  = –4.5 ∙ 10–7 mm 
1•

2ˆdσ  = 9.1∙10–11 mm2 

2 jθε  s22 50 2•ˆθμ  = 1.1 ∙ 10–3 deg 
2•

2ˆθσ  = 3.7∙10–3 deg2 

2 jφε  Idem 50 2•ˆφμ  = 8.7 ∙ 10–3 deg 
1•

2ˆφσ  = 1.7∙10–3 deg2 

In conditions of maximum visibility (i.e., when the totality of the sensors can see the 
target) and assuming a type-I risk level α = 0.05 and v = 2 ⋅ 3 + 1 + 1 ⋅ 2 = 9 DoF, the 
confidence-interval limit for SRSS becomes: 

2
9,1 0.95( ) ( ) 16.9νSRSS P χ SRSS P= − =≤  ≤α  (11) 

Suppose that a possible accident produces a distortion in the angles measured by the 
angular encoder of the laser tracker (s22), while the distance sensor (s21) performs the 
measurement correctly (see the representation in Figure 4). Moreover, suppose that the 
three photogrammetric cameras (s11, s12 and s13) are able to measure the angles subtended 
by P correctly (see Table 4). 
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Figure 3 Representation of the position and orientation of the photogrammetric cameras (s1j) 
and the laser-tracker distance (s21) and angular (s22) sensors in use in the second 
experimental example, (a) 3D view (b) XY plane view (see online version for colours) 
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Key: 

angular sensors of S1 (s1j) 
sensors of S2 (s2j) 

 

Notes: OXYZ is the global coordinate system (coordinates in millimetres). 
The outgoing vectors (in blue) represent the sensor orientations. 

In this case, the localisation algorithm will produce the following (distorted) localisation 
solution: P ≡ (1964.9, 1254.5, 946.5) [mm], characterised by a high error, i.e., SRSS(P) ≈ 
3.6 ⋅ 103 > 16.9. This diagnostic test therefore suggests to reject the localisation result. 
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Figure 4 Scheme of the set-up in the second experimental example (see online version  
for colours) 

 

(Si)  i-th LVM system  
(sij) j-th sensor of the i-th system 
(oijxijyijzij) local coordinate system 
 photogrammetric cameras (from S1) 
 correct measurements by s11, s12, s13 and s21
 wrong angular measurements by s22 

Key: 
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target (P) 

 

Note: A measurement accident in the laser-tracker angular sensor (s22) causes the wrong 
measurement of the azimuth (θ22) and elevation (φ23) angles. 

Table 4 Example of local measurements by the sensors of a combination of two LVM systems 
(S1 and S2) in the second experimental example, (a) before (b) after removing the cause 
of the measurement accident 

Sensor 
(a) Accident present  (b) No accident 

dij [mm] θij [deg] φij [deg]  dij [mm] θij [deg] φij [deg] 
s11 N/A 62.16 –13.91  N/A 62.17 –13.79 
s12 N/A 96.95 –47.04  N/A 96.91 –47.07 
s13 N/A –14.82 –27.82  N/A –14.79 –27.80 
s21 559.2 N/A N/A  559.2 N/A N/A 
s22 N/A (Wrong)  

25.96 
(Wrong) 

–7.39 
 N/A (Correct) 

30.96 
(Correct)  

–3.39 

Repeating the measurement after having eliminated the anomaly in s22, the new angles 
measured by s22 are θ22 = 30.96 degrees and φ22 = –3.39 degrees respectively, while those 
relating to the remaining sensors are almost identical to the previous ones [see  
Table 2(b)]. The new localisation is: (1952.3, 1250.3, 966.9) [mm]. The corresponding 
SRSS value is SRSS(P) ≈ 5.23≤ 16.9. Hence, the new localisation can be considered 
consistent. 
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3.2 Local test 

If the global test fails, a local test can be performed for failure isolation. The philosophy 
of this other test is to correct the results of a dubious localisation, by excluding the 
purportedly faulty sensor(s), without losing the observations from the remaining sensors. 
In this way, the target localisation process is not interrupted, even in the presence of local 
anomalies. 

Referring to the local measurements by each (ij)th sensor, we now consider the three 
types of standardised residuals, which are defined in equation (6) ( , , and ).ij ij ijd θ φz z z  
These residuals can be used for outlier detection with uncorrelated and normally 
distributed observations: if the local measurement is not an outlier, then the 
corresponding standardised residual will be normally distributed ~ N(0, 1). Each 
standardised residual is compared to a α/2-quantile and a (1 – α/2)-quantile of the 
standard normal distribution (i.e., zα/2 and z1–α/2), with the significance level α. The  
null-hypothesis, which denotes that the (ij)th local measurement is not an outlier, is 
rejected if the standardised residual is not included in the [zα/2, z1–α/2] symmetrical 
confidence interval. An outlier in one standardised residual generally causes ones other 
residuals to be increased in absolute values. 

Local testing is easy under the assumption that there is only one purportedly faulty 
sensor (or outlier) in the current localisation: the local measurement with the largest 
(absolute value of the) standardised residual, provided that it is beyond the confidence 
interval, is regarded as an outlier and the corresponding sensor (sij) is excluded from the 
localisation problem. 

The assumption that there is only one outlier is a severe restriction in the case 
measurements from more than one sensor are degraded. However, the procedure can be 
extended to multiple outliers iteratively: after the exclusion of a potentially faulty sensor, 
the statistical test and the rejection of one other sensor can be repeated until no more 
outliers are identified (Wieser et al., 2004). 

3.2.1 Set up of test parameters 
The standardised residuals that are used in this test are the same that are used in the 
global test; therefore they can be calculated according to the procedure described in 
Section 3. 

3.2.2 First application example 
Returning to the example presented in Section 3.1.2 – in which two distance sensors (s12 
and s13) perform distorted measurements – the relevant standardised residuals are 
reported in Table 5(a). These standardised residuals were determined using the residual 
variances estimated in Section 3.1.2. 

Assuming α = 5%, the confidence interval is [zα/2 = –1.96, z1–α/2 = 1.96]. All the 
residuals are outside this interval, but the ‘prime suspect’ is s13, being the sensor with the 
highest residual (absolute) value. s13 is then excluded and, repeating the localisation, the 
new output is P ≡ (–81.2, 1345.3, 358.2) [mm]. Despite this exclusion, all the residuals 
continue to be outside the confidence interval. In this other case the sensor with the  
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highest residual (absolute) value is s12, which is in turn excluded and the localisation is 
repeated [see Table 5(b)]. The new output is P ≡ (353.5, 694.9, 562.6) [mm] and all the 
standardised residuals are eventually contained within the confidence interval [see  
Table 5(c)]. 
Table 5 Standardised residuals for the measurement exemplified in Section 3.1.2, (a) initial 

data (b) data after the exclusion of sensor s12(c) data after the exclusion of sensors s12 
and s13 

Sensor ijdz  ijθz  ijφz  

(a) Initial data 
s11 136.49 N/A N/A 
s12 (Wrong) –149.21 N/A N/A 
s13 (Wrong) –206.22 N/A N/A 
s14 –47.54 N/A N/A 
s15 145.95 N/A N/A 
s21 N/A 65.46 –41.44 
s22 N/A –80.61 –32.47 
s23 N/A -13.96 4.22 
(b) s13 excluded 
s11 48.04 N/A N/A 
s12 (Wrong) –241.97 N/A N/A 
s14 –121.6 N/A N/A 
s15 66.74 N/A N/A 
s21 N/A 56.36 –24.54 
s22 N/A –71.01 –13.74 
s23 N/A –10.18 17.63 
(c) s12 and s13 excluded 
s11 0.76 N/A N/A 
s14 0.79 N/A N/A 
s15 0.25 N/A N/A 
s21 N/A –0.03 –0.05 
s22 N/A 1.33 –0.73 
s23 N/A 1.21 0.92 

Not surprisingly, the global test – which can be performed using the  
local measurements from the six remaining sensors only – is satisfied; precisely, 

2
9,1 0.95( ) 5.9 16.9.νSRSS P χ = − == ≤ ≅α  

3.2.3 Second application example 
Returning to the example presented in Section 3.1.3 – in which the two angles measured 
by the laser-tracker angular sensor (s22) are distorted – the relevant standardised residuals 
are reported in Table 5(a). For this standardisation, we used the residual variances 

1 2
2 2( ,d θσ σ  and 

2
2 )φσ  that are reported in Section 3.1.3. 
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Table 6 Standardised residuals for the measurement exemplified in Section 3.2.2, (a) initial 
data (b) data after the exclusion of sensor s22 

Sensor ijdz  ijθz  ijφz  

(a) Initial data 
s11 N/A 2.15 –9.67 
s12 N/A 39.15 –32.44 
s13 N/A –19.87 –22.01 
s21 –0.01 N/A N/A 
s22 N/A (Wrong) 74.64 (Wrong) 36.11 
(b) s22 excluded 
s11 N/A 0.69 –1.23 
s12 N/A –0.57 –0.11 
s13 N/A –0.31 1.66 
s21 –1.2 * 10–4 N/A N/A 

Assuming α = 5%, the confidence interval is [zα/2 = –1.96, z1–α/2 = 1.96]. All the residuals 
are outside this interval, but the ‘prime suspect’ is s22, being the sensor with the highest 
residual (absolute) value. s22 is then excluded and, repeating the localisation, the new 
output is P ≡ (1,952.3, 1,250.3, 966.8) [mm] and all the standardised residuals are now 
contained within the confidence interval [see Table 5(b)]. 

Not surprisingly, the global test – which can be performed using the  
local measurements from the four remaining sensors – is also satisfied: 

2
7,1 0.95( ) 4.91 14.1.νSRSS P χ = − == ≤ ≅α  

4 Conclusions 

The online diagnostics presented in the paper makes it possible to monitor the  
target-localisation consistency in real time, on the basis of some statistical tests. Tests are 
deliberately general and can be applied to any combination of LVM systems in which 
sensors (of different nature) perform distance and/or angular measurements. An 
important characteristic of these tests is their ability to selectively exclude faulty 
sensor(s), without interrupting the measurement process. 

The proposed tests require the estimation of some parameters; primarily the variances 
related to the local-measurement residuals. These parameters can be evaluated 
empirically by performing some preliminary measurements under controlled conditions, 
according to the reasonable assumption of absence of time or spatial/directional effects. 
Data collected during the system set-up and calibration can be used for this purpose, with 
no additional effort (Bar-Shalom et al., 2001). 

Since the online implementation of these tests requires a certain computational 
capacity, it could slow down the target-localisation process. However, this consequence 
is minimised due to 
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1 the high capacity of existing processors 

2 the fact that the localisation model in use is linearised 

3 test segmentation (i.e., the local test is performed only after the global test has 
detected the presence of potential anomalies). 

Some experimental tests showed that the response time required to implement these tests 
for individual measurements is in the order of magnitude of a few tenths of a second. 

The proposed diagnostic tests can be applied in the localisation of a unique target, 
which is seen by the sensors in use. In the absence of a universal target – i.e., a target 
able to be seen by sensors of different nature simultaneously (such as a laser tracker and a 
set of photogrammetric cameras) – it is possible to perform the localisation using 
different targets (such as a SMR for a laser tracker and a reflective spherical target for a 
set of photogrammetric cameras), repositioning them separately on the same support 
base. In this way, the local-measurement collection process is split into different phases, 
which involve sensors of different nature separately (e.g., the local measurements by 
photogrammetric cameras are collected in one phase, while those by laser tracker are 
collected in another one). This operation is not problematic for static measurements – in 
which the target(s) support base is fixed – but it is not feasible for dynamic 
measurements. Regarding the future, we plan to extend these tests and the proposed 
mathematical model for target-localisation to the so-called 6-DOF probes equipped with 
multiple targets, which are visible from sensors of different nature (Maisano and 
Mastrogiacomo, 2018a, 2018b). 
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Appendix 

A1 Details on the mathematical model for target localisation 

This section presents a detailed description of the mathematical model for target 
localisation, when adopting combinations of LVM systems. 

Let us consider a set of LVM systems (Si, being i = 1, 2, …), each of which is 
equipped with a number of sensors (sij, being j = 1, 2, …) that are positioned around the 
object to be measured, with a local Cartesian coordinate system (oijxijyijzij), which is  
roto-translated with respect to a global Cartesian coordinate system OXYZ (see  
Figure A1). The single LVM systems can be centralised or distributed; in the former 
case, sensors are rigidly connected to each other, while in the latter, they are not. 

A general transformation between a local and the global coordinate system is: 

11 12 13 0

21 22 23 0

31 32 33 0

ij ij ij ij

ij ij ij ij

ij ij ij ij

ij

ij

ij

X r r r x X
Y r r r y Y
Z r r r z Z

     
     = +  = +     
           

0ij ij ijX R x X  (A1) 

Rij is a rotation matrix, which elements are functions of three rotation parameters: 

cos cos cos sin sin
cos sin sin sin cos cos cos sin sin sin sin cos
sin sin cos sin cos sin cos cos sin sin cos cos

ij ij ij ij ij

ij ij ij ij ij ij ij ij ij ij ij ij

ij ij ij ij ij ij ij ij ij ij ij ij

φ κ φ κ φ
ω κ ω φ κ ω κ ω φ κ ω φ
ω κ ω φ κ ω κ ω φ κ ω φ

− 
 = + − − 
 − + 

ijR  (A2) 

where ωij represents a counterclockwise rotation around the xij axis; φij represents a 
counterclockwise rotation around the new yij axis, which was rotated by ωij; κij represents 
a counterclockwise rotation around the new zij axis, which was rotated by ωij and then φij; 
for details, see (Franceschini et al., 2014). 

0 0 0, ,ij ij ij

TX Y Z =  0ijX  are the coordinates of the origin of oijxijyijzij, in the global 
coordinate system OXYZ. 

The (six) location/orientation parameters related to each (ij)th sensor (i.e., 
0 0 0, , ,ij ij ijX Y Z  ωij, φij, κij) are treated as known parameters, since they are measured in an 

initial calibration process. This process, which may vary depending on the specific 
technology of the individual measuring systems, generally includes multiple 
measurements of calibrated artefacts, within the measurement volume (Bai et al., 2014). 
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Figure A1 Schematic representation of the combination of three LVM systems: S1 is a 
distributed system with two sensors (s11 and s12), while S2 and S3 are two  
centralised systems with one sensor (s21) and two sensors (s31 and s32) respectively 
(see online version for colours) 
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The above considerations apply to both distributed and centralised LVM systems. In the 
latter case, sensors are rigidly connected (e.g., consider a photogrammetric tracking bar 
with three cameras), i.e., the position vectors of the individual sensors ( )0ijX are linked 
to the respective Rij matrices (rigid-body constraint). 

The problem of localising the point P = [X, Y, Z]T can be decomposed by considering 
distance and angular sensors separately, as discussed in Sections A1.1 and A1.2 
respectively. 

A1.1 Distance sensors 
From the local perspective of a generic (ij)th distance sensor, the distance between  
P = [X, Y, Z]T and a local observation point – which is assumed to be coincident with the 
origin 0 0 0[ , , ]ij ij ij ij

To X Y Z=  of the local coordinate system oijxijyijzij – can be calculated 
as (see Figure A2): 

( ) ( ) ( )2 2 2
0 0 0 0ij ij ij ijijd X X Y Y Z Z= − = − + − + −X X  (A3) 

Squaring both terms, we obtain 

( ) ( ) ( )2 2 2 2
0 0 0ij ij ij ijX X Y Y Z Z d− + − + − − =  (A4) 
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Figure A2 For a generic sensor (sij), a distance (dij) and two angles – i.e., θij (azimuth) and φij 
(elevation) – are subtended by a line joining the point P (to be localised) and the 
origin oij of the local coordinate system oijxijyijzij 

ijy

ijz

ijϕ

ijθ

P 

ijo

ijx

sensor sij 
P’ 

ijd

 

Considering a point ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, ,
T

X Y Z =   
X  that is reasonably close to X, equation (A4) can be 

linearised by a first order Taylor expansion2: 

( ) ( ) ( )
0

2 2 2
2

0 0 0 0

0

ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ2 0
ˆ ˆˆ ˆ

ij

ij ij ij ij

ij

T

ij

X X X X

Y Y Y Y d X X Y Y Z Z

Z Z Z Z

   − −   
    ⋅ − ⋅ − = − − + − + − =    
    − −      

 (A5) 

The above equation can be expressed in matrix form as: 

0⋅ − =dist dist
ij ijA X B  (A6) 

where 

0

0

0

ˆ̂

ˆ̂2
ˆ̂

ij

ij

ij

T

X X

Y Y

Z Z

 − 
 = ⋅ − 
 −  

dist
ijA  and 2 2 2 2 2 2 2

0 0 0
ˆ ˆ ˆˆ ˆ ˆ .

ij ij ijijd X X Y Y Z Z= + − + − + −dist
ijB  

A1.2 Angular sensors 
From the local perspective of a generic (ij)th angular sensor, two angles – i.e., θij 
(azimuth) and φij (elevation) – are subtended by the line passing through P and oij (see 
Figure A2). Precisely, θij describes the inclination of segment oijP with respect to the 
plane xijyij (with a positive sign when zij > 0), while φij describes the counterclockwise 
rotation of the projection (oijP’) of oijP on the xijyij plane, with respect to the xij axis. 
Referring to the local coordinate system of the (ij)th sensor, the following relationships 
hold: 
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1

1

if 0 then
2 2tan

3if 0 then
2 2

sin
2 2

ij ij
ij

ij
ij

ij ij

ij
ij ij

ij

π πx θy
θ

π πx x θ

z π πφ φ
o P

−

−

 ≥ − ≤ ≤= 
 < < <

= − ≤ ≤


 (A7) 

Given that: 

sin
tan

cos
ij

ij
ij

θ
θ

θ
=  (A8) 

and 

' cos
cos cos cos cos

ij ij ij ij
ij

ij ij ij ij

o P x θ x
o P

φ φ θ φ
= = =

⋅
 (A9) 

Equation (A7) can be reformulated as: 

sin cos 0
sin cos cos 0

ij ij ij ij

ij ij ij ij ij

x θ y θ
x φ z θ φ

⋅ − ⋅ =
⋅ − ⋅ ⋅ =

 (A10) 

In matrix form, equation (A10) becomes: 

sin cos 0
0

sin 0 cos cos

ij
ij ij

ij
ij ij ij

ij

x
θ θ

y
φ θ φ

z

 
−   = ⋅ =   − ⋅    

ij ijM x  (A11) 

The system of two equations in equation (A11) can be expressed as a function of the 
global coordinates of point P. Reversing equation (A1), for switching from the local to 
the global coordinates, and considering that Rij is orthonormal – therefore − =1 T

ij ijR R  
(Hartley and Zisserman, 2003) – we obtain: 

( ) ( )1−= − = −0 0ij ij
T

ij ij ijx R X X R X X  (A12) 

Combining equations (A11) and (A12), we obtain: 

( ) 0− =0ij
T

ij ijM R X X  (A13) 

from which: 

0− =0ij
T T

ij ijij ijM R X M R X  (A14) 

We note that the equations of this system are linear with respect to the three (unknown) 
coordinates of P. Equation (A14) can be expressed in compact form, as: 

0⋅ − =ang ang
ij ijA X B  (A15) 

being =ang T
ijij ijA M R  and .= 0ij

ang T
ijij ijB M R X  
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The matrix expression in equation (A15) is similar to the one related to distance 
sensors [in equation (A6)]. However, in the case of distance sensors, it encapsulates a 
single equation, while in the case of angular sensors, it encapsulates two equations. 

A1.3 Note on hybrid sensors 
A particular case is represented by hybrid sensors, which can be seen as special sensors 
integrating a distance sensor and an angular sensor (e.g., the sensors of a laser 
tracker/tracer). For these sensors, the usable equations for the localisation problem are 
three: one related to a distance measurement ˆ( )ijd  and two related to angular 

measurements ˆ ˆ( , ).ij ijθ φ  These equations can be aggregated into a single linear system: 

0
   

⋅ − = ⋅ − =   
      

dist dist
ij ijhyb hyb

ij ij ang ang
ij ij

A B
A X B X

A B
 (A16) 

where the superscript ‘hyb’ stands for hybrid and , , angdist dist
ij ij ijA B A  and ang

ijB  are the 
same matrices illustrated in Sections A1.1 and A1.2. 

The same system can be formulated in an alternative way. The (unknown) 
coordinates of P, with respect to the (same) local reference system related to the distance 
and the angular sensors are given by (see Figure A2): 

cos cos
cos sin
sin

ij ij ij ij

ij ij ij ij

ij ij ij

x d φ θ
y d φ θ
z d φ

= ⋅ ⋅
 = ⋅ ⋅
 = ⋅

 (A17) 

Combining equations (A1) and (A17) we obtain: 

[ ]cos cos cos sin sin T
ij ij ij ij ij ij ij ijd φ θ d φ θ d φ− = ⋅ ⋅ ⋅ ⋅ ⋅0ij

T T
ij ijR X R X  (A18) 

We note that the equations of this system are linear with respect to the three (unknown) 
coordinates of P and can be expressed in compact form as: 

0⋅ − =hyb hyb
ij ijA X B  (A19) 

where =hyb T
ij ijA R  and [ ]cos cos cos sin sin T

ij ij ij ij ij ij ij ijd φ θ d φ θ d κ= ⋅ ⋅ ⋅ ⋅ ⋅hyb
ijB  

.+ 0ij
T
ijR X  
The expression in equation (A19) is certainly simpler and more compact than that in 

equation (A16); however, it has a significant limitation: the three equations that it 
encapsulates [shown in equation (A17)] are coupled to each other, as they require the 
simultaneous knowledge of dij, θij and φij. For example, in the case dij only is available, 
while θij and φij not, none of the three equations can be used. For this reason, it seems 
more practical to use the formulation in equation (A16)3, in which the distance and 
angular measurements are treated separately. 
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A1.4 Weighting and solution 
Considering a generic combination of LVM systems that are equipped with distance 
and/or angular sensors, the resulting linearised target-localisation model is: 

0
   

⋅ − = ⋅ − =   
   

dist dist

ang ang

A B
A X B X

A B
 (A20) 

where blocks Adist, Aang, Bdist and Bang are defined as: 

, , ,

dist distang angij I ij Iij I ij I∈ ∈∈ ∈

      
      = = = =      
            

# ## #

# # # #

ang angdist dist ang dist dist ang
ij ij ij ijA A A A B B B B  

where Idist and Iang are the sets of index-pair values (ij) relating to the distance and angular 
sensors respectively. 

The system in equation (20) can be solved when at least three equations are available 
(e.g., P is seen by at least three distance sensors, or one distance sensor and one angular 
sensor, or two angular sensors, etc.). Since this system is generally overdefined (more 
equations than unknown parameters), there are several possible solution approaches, 
ranging from those based on the iterative minimisation of a suitable error function 
(Franceschini et al., 2014) to those based on the least squares method (Wolberg, 2005). 

It is worth remarking that the equations of the system may differently contribute to 
the uncertainty in the localisation of P. Specifically, two of the main factors affecting this 
uncertainty are: 

• Uncertainty in the local measurements ˆ ˆ( ,ij ijd θ  and ˆ ),ijφ  which generally depends 
on the metrological characteristics of sensors. 

• Relative position between the point to be localised (P) and each (ij)th sensor; e.g., 
assuming that the uncertainty in angular measurements is fixed, the uncertainty in the 
localisation of P tends to increase proportionally to the distance between P and the 
angular sensors (Maisano and Mastrogiacomo, 2016). 

• Uncertainty in the position/orientation of sensors 0 0 0ˆ ˆ ˆ ˆˆ( , , , ,ij ij ij ij ijX Y Z ω j  and ˆ ),ijκ  
resulting from initial calibration process(es). 

For simplicity, the proposed mathematical model considers only the first two factors, 
neglecting the third one (Maisano and Mastrogiacomo, 2016). 

The sensors that mostly contribute to uncertainty in the localisation of P are therefore 
the less accurate and/or the more distant from P. 

Returning to the system in equation (A20), it would be appropriate to solve it giving 
greater weight to the contributions from sensors that produce less uncertainty and  
vice versa. To this purpose, an elegant and practical method is that of the GLS (Kariya 
and Kurata, 2004), in which a weight matrix (W), which takes into account the 
uncertainty produced by the equations of the system. One of the most practical ways to 
define W is the application of the multivariate law of propagation of uncertainty to the 
system in equation (A20), referring to the parameters affected by uncertainty (Hall, 
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2004). Assuming that such parameters are the distances or angles measured by each (ij)th 
sensor, we collect them in a vector ξ: 

dist

ang

ij

ij I

ij

ij

ij I

d

θ
φ

∈

∈

  
  
  
       = =       
         

    

#

#

#

#

dist

ang

ξ
ξ

ξ
 (A22) 

We remark that ξ is a vector containing the sensor local measurements, which can be 
decomposed in the two sub-vectors, ξdist and ξang, the former relating to distance sensors 
and the latter to angular sensors. For simplicity, we do not take into account the 
uncertainty related to the estimates of the location/orientation parameters of the sensors, 
which are contained in 0ijX  and Rij (Franceschini et al., 2011). 

Propagating the uncertainty of the equations in equation (A20) with respect to the 
elements in ξ, we define W as: 

( )( ) 1
.T −

 = ⋅ ⋅ covW J ξ J  (A23) 

Let us now focus the attention on the elements in the second member of equation (A23). 
J is the Jacobian (block-diagonal) matrix containing the partial derivatives of the 
elements in the first member of equation (A20) with respect to the elements in ξ: 

dist

ang

ij I

ij I

∈

∈

  
  
  
      = =        
  
  

   

0
0

00
00

0
0

%

%

%

%

dist
ij

dist

ang

ang
ij

J

J
J

J
J

 (A24) 

where blocks dist
ijJ  and ang

ijJ  are defined as 

[ ]2

cos sin 0
sin cos cos cos sin

ij

ij ij ij ij

ij ij ij ij ij ij ij ij

d

x θ y θ
z θ φ x φ z θ φ

= ⋅

⋅ + ⋅ 
=  ⋅ ⋅ + ⋅ ⋅ 

dist
ij

ang
ij

J

J
 (A25) 

and the remaining elements of the matrix are all zeros. 
Returning to the description of equation (A22), cov(ξ) is the covariance matrix of ξ, 

defined as: 
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( ) ( )
( )

( )

( )

dist

ang

ij I

ij I

∈

∈

   
   
   
   

     
= =    

          
   
       

0
cov 0

0cov 0
cov

00 cov
0 cov

0

%

%

%

%

dist
ij

dist

ang

ang
ij

ξ

ξ
ξ

ξ

ξ

 (A26) 

where blocks cov( )dist
ijξ  and cov( )ang

ijξ  are defined as 

( )

( )

2

2

2

0

0

ij

ij

ij

d

θ

φ

σ

σ

σ

 =  
 
 =
  

cov

cov

dist
ij

ang
ij

ξ

ξ
 (A27) 

We notice that the diagonal elements of cov(ξ) are the variances related to the distances 
and angles measured by the individual sensors (Section 3.1.1 illustrates some practical 
ways to estimate these parameters). The off-diagonal entries of these blocks are zeros, 
assuming no correlation between the local measurements by a generic sensor; the  
off-block-diagonal entries are zeros, assuming that sensors work independently from each 
other and there is no correlation between the local measurements related to different 
sensors. 

By applying the GLS method to the system in equation (A20), we obtain the final 
position estimate of P as: 

( ) 1ˆ T T−= ⋅ ⋅ ⋅ ⋅ ⋅X A W A A W B  (A28) 

For further details on the GLS method, see (Kariya and Kurata, 2004). 
We emphasise that an (at least rough) initial estimate of X is required to define some 

elements of the blocks dist
ijA  [see equation (A6)] and ang

ijJ  [see equation (A25)]. This 
problem can be overcome applying the formula in equation (A28) recursively: 

1 setting no-matter-what initial ˆ̂ ,X  in order to determine the elements of blocks 
dist
ijA and ang

ijJ  

2 obtaining a not very accurate localisation of P 

3 iterating the localisation using the result of the previous one as a new ˆ̂ .X  

We verified that the localisation tends to converge to the correct solution after no more 
than five-ten iterations. 
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Notes 
1 The authors are aware that systematic measurement errors can never be eradicated completely; 

this assumption is therefore not valid in general, even though could be adequate for the 
purpose of diagnostics (Franceschini et al., 2014). 

2 The ‘double-hat’ symbol ‘ ˆ̂ ’ indicates that a point close to X can be obtained through a rough 

estimate of the (final) estimate of X itself (i.e., X̂ ). We will illustrate how to determine ˆ̂ .X  
later. 

3 Extending this reasoning, we also might find the way to decouple the equations relating to the 
angles (θij and φij) that are measured by angular sensors [see equation (A7)]. However, this 
would unnecessarily complicate the formulation of the problem, without any practical reason: 
in fact, it is very unlikely that the same angular sensor provides a correct measurement for one 
angle and a wrong one for the other one. 


